Dynamic behaviour of auxetic gradient composite hexagonal honeycombs

被引:161
作者
Boldrin, L. [1 ]
Hummel, S. [1 ]
Scarpa, F. [1 ,2 ]
Di Maio, D. [1 ,2 ]
Lira, C. [1 ]
Ruzzene, M. [3 ]
Remillat, C. D. L. [4 ]
Lim, T. C. [5 ]
Rajasekaran, R. [6 ]
Patsias, S. [6 ]
机构
[1] Univ Bristol, Adv Composites Ctr Innovat & Sci, Bristol BS8 1TR, Avon, England
[2] Univ Bristol, Fac Engn, Dynam & Control Res Grp, Bristol BS8 1TR, Avon, England
[3] Georgia Inst Technol, D Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
[4] Univ Bristol, Aerosp Engn, Queens Sch Engn, Univ Walk, Bristol BS8 1TR, Avon, England
[5] SIM Univ, Sch Sci & Technol, Singapore, Singapore
[6] Rolls Royce PLC, Mech Methods, POB 31, Derby DE24 8BJ, England
关键词
Modal analysis; Auxetic; Honeycomb; Gradient cellular structure; NEGATIVE POISSONS RATIO; CELLULAR STRUCTURES; SANDWICH STRUCTURES; MECHANICAL-PROPERTIES; MODAL DENSITY; CORES; PLATES;
D O I
10.1016/j.compstruct.2016.03.044
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper describes a vibroacoustics analysis of auxetic gradient honeycomb composite structures with hexagonal configurations. We examine two classes of gradient cellular layout - one with continuously varying internal cell angle, the other with gradient cell wall aspect ratio across the surface of the honeycomb panel. The structural dynamics behaviour of the two gradient honeycomb configurations is simulated using full-scale Finite Elements and Component Mode Synthesis (CMS) substructuring. Samples of the gradient honeycombs have been manufactured by means of 3D printing techniques, and subjected to modal analysis using scanning laser vibrometry. We observe a general good comparison between the numerical and the experimental results. A numerical parametric analysis shows the effect of the gradient topology upon the average mobility and general vibroacoustics response of these particular cellular structures. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 124
页数:11
相关论文
共 42 条
[1]   Mechanical properties of functionally graded 2-D cellular structures: A finite element simulation [J].
Ajdari, A. ;
Canavan, P. ;
Nayeb-Hashemi, H. ;
Warner, G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 499 (1-2) :434-439
[2]   Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J].
Ajdari, Amin ;
Nayeb-Hashemi, Hamid ;
Vaziri, Ashkan .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (3-4) :506-516
[3]   Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading [J].
Alderson, A. ;
Alderson, K. L. ;
Attard, D. ;
Evans, K. E. ;
Gatt, R. ;
Grima, J. N. ;
Miller, W. ;
Ravirala, N. ;
Smith, C. W. ;
Zied, K. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (07) :1042-1048
[4]   Piezomorphic Materials [J].
Alderson, Andrew ;
Alderson, Kim L. ;
McDonald, Samuel A. ;
Mottershead, Beth ;
Nazare, Shonali ;
Withers, Philip J. ;
Yao, Yong T. .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2013, 298 (03) :318-327
[5]  
[Anonymous], 1997, Cellular solid structure and properties
[6]   Mechanical properties of auxetic carbon/epoxy composites: static and cyclic fatigue behaviour [J].
Bezazi, A. ;
Boukharouba, W. ;
Scarpa, F. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (09) :2102-2110
[7]   Thermal conductivities of iso-volume centre-symmetric honeycombs [J].
Boldrin, L. ;
Scarpa, F. ;
Rajasekaran, R. .
COMPOSITE STRUCTURES, 2014, 113 :498-506
[8]  
CHEN CP, 1989, CELL POLYM, V8, P343
[9]  
CLARKSON BL, 1983, J SOUND VIB, V91, P103, DOI 10.1016/0022-460X(83)90454-6
[10]  
Craig R, 1976, LANGLEY RES CTR ADV, V2