Dynamic behaviour of auxetic gradient composite hexagonal honeycombs

被引:161
作者
Boldrin, L. [1 ]
Hummel, S. [1 ]
Scarpa, F. [1 ,2 ]
Di Maio, D. [1 ,2 ]
Lira, C. [1 ]
Ruzzene, M. [3 ]
Remillat, C. D. L. [4 ]
Lim, T. C. [5 ]
Rajasekaran, R. [6 ]
Patsias, S. [6 ]
机构
[1] Univ Bristol, Adv Composites Ctr Innovat & Sci, Bristol BS8 1TR, Avon, England
[2] Univ Bristol, Fac Engn, Dynam & Control Res Grp, Bristol BS8 1TR, Avon, England
[3] Georgia Inst Technol, D Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
[4] Univ Bristol, Aerosp Engn, Queens Sch Engn, Univ Walk, Bristol BS8 1TR, Avon, England
[5] SIM Univ, Sch Sci & Technol, Singapore, Singapore
[6] Rolls Royce PLC, Mech Methods, POB 31, Derby DE24 8BJ, England
关键词
Modal analysis; Auxetic; Honeycomb; Gradient cellular structure; NEGATIVE POISSONS RATIO; CELLULAR STRUCTURES; SANDWICH STRUCTURES; MECHANICAL-PROPERTIES; MODAL DENSITY; CORES; PLATES;
D O I
10.1016/j.compstruct.2016.03.044
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper describes a vibroacoustics analysis of auxetic gradient honeycomb composite structures with hexagonal configurations. We examine two classes of gradient cellular layout - one with continuously varying internal cell angle, the other with gradient cell wall aspect ratio across the surface of the honeycomb panel. The structural dynamics behaviour of the two gradient honeycomb configurations is simulated using full-scale Finite Elements and Component Mode Synthesis (CMS) substructuring. Samples of the gradient honeycombs have been manufactured by means of 3D printing techniques, and subjected to modal analysis using scanning laser vibrometry. We observe a general good comparison between the numerical and the experimental results. A numerical parametric analysis shows the effect of the gradient topology upon the average mobility and general vibroacoustics response of these particular cellular structures. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 124
页数:11
相关论文
共 42 条
[21]  
Hynna P, 2002, BVAL37021228 VTT TEC
[22]   Deployable auxetic shape memory alloy cellular antenna demonstrator: design, manufacturing and modal testing [J].
Jacobs, S. ;
Coconnier, C. ;
DiMaio, D. ;
Scarpa, F. ;
Toso, M. ;
Martinez, J. .
SMART MATERIALS AND STRUCTURES, 2012, 21 (07)
[23]   FOAM STRUCTURES WITH A NEGATIVE POISSONS RATIO [J].
LAKES, R .
SCIENCE, 1987, 235 (4792) :1038-1040
[24]   Functionally graded beam for attaining Poisson-curving [J].
Lim, TC .
JOURNAL OF MATERIALS SCIENCE LETTERS, 2002, 21 (24) :1899-1901
[25]   A Gradient Cellular Core for Aeroengine Fan Blades Based on Auxetic Configurations [J].
Lira, C. ;
Scarpa, F. ;
Rajasekaran, R. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (09) :907-917
[26]   Transverse shear modulus of SILICOMB cellular structures [J].
Lira, C. ;
Scarpa, F. ;
Tai, Y. H. ;
Yates, J. R. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (09) :1236-1241
[27]   Transverse shear stiffness of thickness gradient honeycombs [J].
Lira, C. ;
Scarpa, F. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (06) :930-936
[28]   Transverse elastic shear of auxetic multi re-entrant honeycombs [J].
Lira, C. ;
Innocenti, P. ;
Scarpa, F. .
COMPOSITE STRUCTURES, 2009, 90 (03) :314-322
[29]   Models for the elastic deformation of honeycombs [J].
Masters, IG ;
Evans, KE .
COMPOSITE STRUCTURES, 1996, 35 (04) :403-422
[30]   Auxetic honeycombs with lossy polymeric infills for high damping structural materials [J].
Murray, Gabriel J. ;
Gandhi, Farhan .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2013, 24 (09) :1090-1104