Applying the linear δ expansion to the iφ3 interaction

被引:17
作者
Blencowe, MP [1 ]
Jones, HF [1 ]
Korte, AP [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
来源
PHYSICAL REVIEW D | 1998年 / 57卷 / 08期
关键词
D O I
10.1103/PhysRevD.57.5092
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The linear delta expansion (LDE) is applied to the Hamiltonian H = 1/2(p(2)+m(2)x(2))+igx(3), which arises in the study of Lee-Yang zeros in statistical mechanics. Despite being non-Hermitian, this Hamiltonian appears to possess a real, positive spectrum. Tn the LDE, as in perturbation theory, the eigenvalues are naturally real, so a proof of this property devolves on the convergence of the expansion. A proof of convergence of a modified version of the LDE is provided for the ix(3) potential in zero dimensions. The methods developed in zero dimensions are then extended to quantum mechanics, when we provide numerical evidence for convergence.
引用
收藏
页码:5092 / 5099
页数:8
相关论文
共 18 条
[1]   EXTENDED VARIATIONAL APPROACH TO THE SU(2) MASS GAP ON THE LATTICE [J].
AKEYO, JO ;
JONES, HF ;
PARKER, CS .
PHYSICAL REVIEW D, 1995, 51 (03) :1298-1304
[2]  
BENDER C, COMMUNICATION
[3]   LOGARITHMIC APPROXIMATIONS TO POLYNOMIAL LAGRANGEANS [J].
BENDER, CM ;
MILTON, KA ;
MOSHE, M ;
PINSKY, SS ;
SIMMONS, LM .
PHYSICAL REVIEW LETTERS, 1987, 58 (25) :2615-2618
[4]   NOVEL PERTURBATIVE SCHEME IN QUANTUM-FIELD THEORY [J].
BENDER, CM ;
MILTON, KA ;
MOSHE, M ;
PINSKY, SS ;
SIMMONS, LM .
PHYSICAL REVIEW D, 1988, 37 (06) :1472-1484
[5]   Nonperturbative calculation of symmetry breaking in quantum field theory [J].
Bender, CM ;
Milton, KA .
PHYSICAL REVIEW D, 1997, 55 (06) :R3255-R3259
[6]  
Bessis D., COMMUNICATION
[7]   Applying the linear delta expansion to disordered systems [J].
Blencowe, MP ;
Korte, AP .
PHYSICAL REVIEW B, 1997, 56 (15) :9422-9430
[8]   PROOF OF THE CONVERGENCE OF THE LINEAR DELTA-EXPANSION - ZERO DIMENSIONS [J].
BUCKLEY, IRC ;
DUNCAN, A ;
JONES, HF .
PHYSICAL REVIEW D, 1993, 47 (06) :2554-2559
[9]   CONVERGENCE PROOF FOR OPTIMIZED DELTA-EXPANSION - ANHARMONIC-OSCILLATOR [J].
DUNCAN, A ;
JONES, HF .
PHYSICAL REVIEW D, 1993, 47 (06) :2560-2572
[10]   Improved convergence proof of the delta expansion and order dependent mappings [J].
Guida, R ;
Konishi, K ;
Suzuki, H .
ANNALS OF PHYSICS, 1996, 249 (01) :109-145