Identification and characterization of three new components of the mSin3A corepressor complex

被引:144
作者
Fleischer, TC [1 ]
Yun, UJ [1 ]
Ayer, DE [1 ]
机构
[1] Univ Utah, Huntsman Canc Inst, Dept Oncol Sci, Salt Lake City, UT 84112 USA
关键词
D O I
10.1128/MCB.23.10.3456-3467.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mSin3A corepressor complex contains 7 to 10 tightly associated polypeptides and is utilized by many transcriptional repressors. Much of the corepressor function of mSin3A derives from associations with the histone deacetylases HDAC1 and HDAC2; however, the contributions of the other mSin3A-associated polypeptides remain largely unknown. We have purified an mSin3A complex from K562 erythroleukemia cells and identified three new mSin3A-associated proteins (SAP): SAP180, SAP130, and SAP45. SAP180 is 40% identical to a previously identified mSin3A-associated protein, RBP1. SAP45 is identical to mSDS3, the human ortholog of the SDS3p component of the Saccharomyces cerevisiae Sin3p-Rpd3p corepressor complex. SAP130 does not have detectable homology to other proteins. Coimmunoprecipitation and gel filtration data suggest that the new SAPs are, at the very least, components of the same mSin3A complex. Each new SAP repressed transcription when tethered to DNA. Furthermore, repression correlated with mSin3A binding, suggesting that the new SAPs are components of functional mSin3A corepressor complexes. SAP180 has two repression domains: a C-terminal domain, which interacts with the mSin3A-HDAC complex, and an N-terminal domain, which functions independently of mSin3A-HDAC. SAP130 has a repression domain at its C terminus that interacts with the mSin3A-HDAC complex and an N-terminal domain that probably mediates an interaction with a transcriptional activator. Together, our data suggest that these novel SAPs function in the assembly and/or enzymatic activity of the mSin3A complex or in mediating interactions between the mSin3A complex and other regulatory complexes. Finally, all three SAPs bind to the HDAC-interaction domain (HID) of mSin3A, suggesting that the HID functions as the assembly interface for the mSin3A corepressor complex.
引用
收藏
页码:3456 / 3467
页数:12
相关论文
共 63 条
  • [1] NuRD and SIN3 - histone deacetylase complexes in development
    Ahringer, J
    [J]. TRENDS IN GENETICS, 2000, 16 (08) : 351 - 356
  • [2] Chromodomains are protein-RNA interaction modules
    Akhtar, A
    Zink, D
    Becker, PB
    [J]. NATURE, 2000, 407 (6802) : 405 - 409
  • [3] Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex
    Alland, L
    David, G
    Hong, SL
    Potes, J
    Muhle, R
    Lee, HC
    Hou, H
    Chen, K
    DePinho, RA
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (08) : 2743 - 2750
  • [4] Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression
    Alland, L
    Muhle, R
    Hou, H
    Potes, J
    Chin, L
    SchreiberAgus, N
    DePinho, RA
    [J]. NATURE, 1997, 387 (6628) : 49 - 55
  • [5] Ausubel FM, 1995, CURRENT PROTOCOLS MO
  • [6] Ayer DE, 1996, MOL CELL BIOL, V16, P5772
  • [7] MAD-MAX TRANSCRIPTIONAL REPRESSION IS MEDIATED BY TERNARY COMPLEX-FORMATION WITH MAMMALIAN HOMOLOGS OF YEAST REPRESSOR SIN3
    AYER, DE
    LAWRENCE, QA
    EISENMAN, RN
    [J]. CELL, 1995, 80 (05) : 767 - 776
  • [8] Histone deacetylases: transcriptional repression with SINers and NuRDs
    Ayer, DE
    [J]. TRENDS IN CELL BIOLOGY, 1999, 9 (05) : 193 - 198
  • [9] Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    Bannister, AJ
    Zegerman, P
    Partridge, JF
    Miska, EA
    Thomas, JO
    Allshire, RC
    Kouzarides, T
    [J]. NATURE, 2001, 410 (6824) : 120 - 124
  • [10] Histone modifications in transcriptional regulation
    Berger, SL
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) : 142 - 148