Increased nuclear proteins in muscle satellite cells in aged animals as compared to young growing animals

被引:70
作者
Machida, S
Booth, FW
机构
[1] Univ Missouri, Dept Biomed Sci, Columbia, MO 65211 USA
[2] Univ Missouri, Dalton Cardiovasc Ctr, Dept Med Pharmacol & Physiol, Columbia, MO 65211 USA
关键词
Forkhead; p21; p27; p53; Sir2;
D O I
10.1016/j.exger.2004.08.009
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Evidence implies that satellite cells could play some limiting role in aged Muscle undergoing repair or maintenance of mass, which is of potential clinical concern as this could contribute to sarcopenia. Further, insufficient information is available concerning the cellular mechanisms responsible for the lower rat satellite cell proliferation in old animals. Thus, it was hypothesized that the following proteins would be increased in nuclei of satellite cells from old rat skeletal muscle: the cyclin-dependent kinase (CDK) inhibitors p21(WAF1/CIP1) and P27(Kip1) as well as the transcription factors p53 and Forkhead box, subgroup O1 (FOXO1). In addition, the NAD+-dependent histone deacetylase SIRT1, the mammalian ortholog of the yeast SIR2 (silence information regulator 2) and a member of the Sirtuin family, was hypothesized to decrease in satellite cell nuclei of old rats. Old satellite cells (30-months old) exhibited a lesser number of BrdU-positive cells as compared to satellite cells (3-months old) from young growing animals. Western blot analysis demonstrated that nuclei of old satellite cells accumulated the cell cycle inhibitors p21(WAF1/CIP1) and p27. In addition, nuclear p53 and FOXO I proteins were also higher in old satellite cells than in cells from young growing animals. These data indicated both p53/p21(WAF1/CIP1) and FOXO1/p27(Kip1)-dependent pathways might contribute to the age-associated decrease in satellite cell proliferation. Cytoplasmic manganese superoxide dismutase (MnSOD), a gene driven by FOXO1, was higher in old satellite cells. Unexpectedly, nuclear SIRT1 was also increased in old satellite cells compared with satellite cells from young growing animals. The physiological significance of enhanced nuclear SIRT1 expression in old satellite cells remains elusive at this time. In summary, satellite cells in old rats have nuclear accumulation of proteins inhibiting the cell cycle as compared to young, growing animals. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1521 / 1525
页数:5
相关论文
共 29 条
[1]   Cellular and molecular responses to increased skeletal muscle loading after irradiation [J].
Adams, GR ;
Caiozzo, VJ ;
Haddad, F ;
Baldwin, KM .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 283 (04) :C1182-C1195
[2]   Regulation of cell survival and proliferation by the FOXO (Forkhead box, class 0) subfamily of forkhead transcription factors [J].
Birkenkamp, KU ;
Coffer, PJ .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2003, 31 :292-297
[3]   CONTRACTION-INDUCED INJURY - RECOVERY OF SKELETAL-MUSCLES IN YOUNG AND OLD MICE [J].
BROOKS, SV ;
FAULKNER, JA .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 258 (03) :C436-C442
[4]   IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle [J].
Chakravarthy, MV ;
Davis, BS ;
Booth, FW .
JOURNAL OF APPLIED PHYSIOLOGY, 2000, 89 (04) :1365-1379
[5]   Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3′-kinase/Akt signaling pathway [J].
Chakravarthy, MV ;
Abraha, TW ;
Schwartz, RJ ;
Fiorotto, ML ;
Booth, FW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (46) :35942-35952
[6]   Notch-mediated restoration of regenerative potential to aged muscle [J].
Conboy, IM ;
Conboy, MJ ;
Smythe, GM ;
Rando, TA .
SCIENCE, 2003, 302 (5650) :1575-1577
[7]   Extended amplification in vitro and replicative senescence:: Key factors implicated in the success of human myoblast transplantation [J].
Cooper, RN ;
Thiesson, D ;
Furling, D ;
Di Santo, JP ;
Butler-Browne, GS ;
Mouly, V .
HUMAN GENE THERAPY, 2003, 14 (12) :1169-1179
[8]   New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? [J].
Coqueret, O .
TRENDS IN CELL BIOLOGY, 2003, 13 (02) :65-70
[9]  
DAITOKU H, 2004, UNPUB P NATL ACAD SI
[10]   Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27KIP1 [J].
Dijkers, PF ;
Medema, RH ;
Pals, C ;
Banerji, L ;
Thomas, NSB ;
Lam, EWF ;
Burgering, BMT ;
Raaijmakers, JAM ;
Lammers, JWJ ;
Koenderman, L ;
Coffer, PJ .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (24) :9138-9148