Conformal dynamics of fractal growth patterns without randomness

被引:19
作者
Davidovitch, B [1 ]
Feigenbaum, MJ
Hentschel, HGE
Prscaccia, I
机构
[1] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[2] Rockefeller Univ, New York, NY 10021 USA
[3] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 02期
关键词
D O I
10.1103/PhysRevE.62.1706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Many models of fractal growth patterns (such as diffusion limited aggregation and dielectric breakdown models) combine complex geometry with randomness; this double difficulty is a stumbling block to their elucidation. In this paper we introduce a wide class of fractal growth models with highly complex geometry but without any randomness in their growth rules. The models are defined in terms of deterministic itineraries of iterated conformal maps, generating the function Phi((n))(omega) which maps the exterior of the unit circle to the exterior of an n-particle growing aggregate. The complexity of the evolving interfaces is fully contained in the deterministic dynamics of the conformal map Phi((n))(omega). We focus attention on a class of growth models in which the itinerary is quasiperiodic. Such itineraries can be approached via a series of rational approximants. The analytic power gained is used to introduce a scaling theory of the fractal growth patterns and to identify the exponent that determines the fractal dimension.
引用
收藏
页码:1706 / 1715
页数:10
相关论文
共 18 条
  • [1] BRADY RM, 1984, NATURE, V309, P225, DOI 10.1038/309225a0
  • [2] Conformal theory of the dimensions of diffusion-limited aggregates
    Davidovich, B
    Procaccia, I
    [J]. EUROPHYSICS LETTERS, 1999, 48 (05): : 547 - 553
  • [3] Diffusion limited aggregation and iterated conformal maps
    Davidovitch, B
    Hentschel, HGE
    Olami, Z
    Procaccia, I
    Sander, LM
    Somfai, E
    [J]. PHYSICAL REVIEW E, 1999, 59 (02): : 1368 - 1378
  • [4] Duren P. L., 1983, Univalent functions
  • [5] THE FIXED-SCALE TRANSFORMATION APPROACH TO FRACTAL GROWTH
    ERZAN, A
    PIETRONERO, L
    VESPIGNANI, A
    [J]. REVIEWS OF MODERN PHYSICS, 1995, 67 (03) : 545 - 604
  • [6] MORPHOLOGY AND MICROSTRUCTURE IN ELECTROCHEMICAL DEPOSITION OF ZINC
    GRIER, D
    BENJACOB, E
    CLARKE, R
    SANDER, LM
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (12) : 1264 - 1267
  • [7] SOME CONSEQUENCES OF AN EQUATION OF MOTION FOR DIFFUSE GROWTH
    HALSEY, TC
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (18) : 2067 - 2070
  • [8] DIFFUSION-LIMITED AGGREGATION AS BRANCHED GROWTH
    HALSEY, TC
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (08) : 1228 - 1231
  • [9] SCALING STRUCTURE OF THE SURFACE-LAYER OF DIFFUSION-LIMITED AGGREGATES
    HALSEY, TC
    MEAKIN, P
    PROCACCIA, I
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (08) : 854 - 857
  • [10] Laplacian growth as one-dimensional turbulence
    Hastings, MB
    Levitov, LS
    [J]. PHYSICA D, 1998, 116 (1-2): : 244 - 252