The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum

被引:132
作者
Bedmar, EJ [1 ]
Robles, EF [1 ]
Delgado, MJ [1 ]
机构
[1] Estac Expt Zaidin, Dept Microbiol Suelo & Sistemas Simbioticos, CSIC, Granada 18080, Spain
关键词
Bradyrhizobium japonicum; denitrification genes; microaerobiosis; nitrate respiration; nitrite and nitric oxide respiratory regulator; two-component regulatory system;
D O I
10.1042/BST0330141
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Denitrification is an alternative form of respiration in which bacteria sequentially reduce nitrate or nitrite to nitrogen gas by the intermediates nitric oxide and nitrous oxide when oxygen concentrations are limiting. in Bradyrhizobium japonicum, the N-2-fixing microsymbiont of soya beans, denitrification depends on the napEDABC, nirK, norCBQD, and nosRZDFYLX gene clusters encoding nitrate-, nitrite-, nitric oxide- and nitrous oxide-reductase respectively. Mutational analysis of the B. japonicum nap genes has demonstrated that the periplasmic nitrate reductase is the only enzyme responsible for nitrate respiration in this bacterium. Regulatory studies using transcriptional lacZ fusions to the nirK, norCBQD and nosRZDFYLX promoter region indicated that microaerobic induction of these promoters is dependent on the fixLJ and fiXK(2) genes whose products form the FixLJ-FixK(2) regulatory cascade. Besides FixK(2), another protein, nitrite and nitric oxide respiratory regulator, has been shown to be required for N-oxide regulation of the B. japonicum nirK and norCBQD genes. Thus nitrite and nitric oxide respiratory regulator adds to the FixLJ-FixK(2) cascade an additional control level which integrates the N-oxide signal that is critical for maximal induction of the B. japonicum denitrification genes. However, the identity of the signalling molecule and the sensing mechanism remains unknown.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 30 条
[1]   Molecular genetics of the genus Paracoccus:: Metabolically versatile bacteria with bioenergetic flexibility [J].
Baker, SC ;
Ferguson, SJ ;
Ludwig, B ;
Page, MD ;
Richter, OMH ;
van Spanning, RJM .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (04) :1046-+
[2]   The periplasmic nitrate reductase in Pseudomonas sp strain G-179 catalyzes the first step of denitrification [J].
Bedzyk, L ;
Wang, T ;
Ye, RW .
JOURNAL OF BACTERIOLOGY, 1999, 181 (09) :2802-2806
[3]   The Tat protein export pathway [J].
Berks, BC ;
Sargent, F ;
Palmer, T .
MOLECULAR MICROBIOLOGY, 2000, 35 (02) :260-274
[4]   Function of the Rhizobium etli CFN42 nirK gene in nitrite metabolism [J].
Bueno, E ;
Gómez-Hernández, N ;
Girard, L ;
Bedmar, EJ ;
Delgado, MJ .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 :162-163
[5]   Bacterial nitric oxide synthesis [J].
Cutruzzolà, F .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1999, 1411 (2-3) :231-249
[6]   NOSR, A MEMBRANE-BOUND REGULATORY COMPONENT NECESSARY FOR EXPRESSION OF NITROUS-OXIDE REDUCTASE IN DENITRIFYING PSEUDOMONAS-STUTZERI [J].
CUYPERS, H ;
VIEBROCKSAMBALE, A ;
ZUMFT, WG .
JOURNAL OF BACTERIOLOGY, 1992, 174 (16) :5332-5339
[7]   ASPECTS OF NITROGEN-FIXATION AND DENITRIFICATION BY AZOSPIRILLUM [J].
DANNEBERG, G ;
KRONENBERG, A ;
NEUER, G ;
BOTHE, H .
PLANT AND SOIL, 1986, 90 (1-3) :193-202
[8]   The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration [J].
Delgado, MJ ;
Bonnard, N ;
Tresierra-Ayala, A ;
Bedmar, EJ ;
Müller, P .
MICROBIOLOGY-SGM, 2003, 149 :3395-3403
[9]   GENETIC-REGULATION OF NITROGEN-FIXATION IN RHIZOBIA [J].
FISCHER, HM .
MICROBIOLOGICAL REVIEWS, 1994, 58 (03) :352-386
[10]   Nitric oxide reductases in bacteria [J].
Hendriks, J ;
Oubrie, A ;
Castresana, J ;
Urbani, A ;
Gemeinhardt, S ;
Saraste, M .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1459 (2-3) :266-273