Markov random field segmentation of brain MR images

被引:330
作者
Held, K
Kops, ER [1 ]
Krause, BJ
Wells, WM
Kikinis, R
Muller-Gartner, HW
机构
[1] Forschungszentrum Julich, Res Ctr, Inst Med, D-52425 Julich, Germany
[2] Univ Augsburg, Inst Theoret Phys, D-86135 Augsburg, Germany
[3] Heinrich Heine Univ Hosp, Dept Nucl Med, D-40225 Dusseldorf, Germany
[4] Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
关键词
magnetic resonance imaging; Markov random fields; segmentation;
D O I
10.1109/42.650883
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe a fully automatic three-dimensional (3-D)-segmentation technique for brain magnetic resonance (MR) images, By means of Markov random fields (MRF's) the segmentation algorithm captures three features that are of special importance for MR images, i.e., nonparametric distributions of tissue intensities, neighborhood correlations, and signal inhomogeneities, Detailed simulations and real MR images demonstrate the performance of the segmentation algorithm, In particular, the impact of noise, inhomogeneity, smoothing, and structure thickness are analyzed quantitatively, Even single-echo MR images are well classified into gray matter, white matter, cerebrospinal fluid, scalp-bone, and background, A simulated annealing and an iterated conditional modes implementation are presented.
引用
收藏
页码:878 / 886
页数:9
相关论文
共 25 条
[1]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[2]   3D RECONSTRUCTION OF THE BRAIN FROM MAGNETIC-RESONANCE IMAGES USING A CONNECTIVITY ALGORITHM [J].
CLINE, HE ;
DUMOULIN, CL ;
HART, HR ;
LORENSEN, WE ;
LUDKE, S .
MAGNETIC RESONANCE IMAGING, 1987, 5 (05) :345-352
[3]   MODELING AND SEGMENTATION OF NOISY AND TEXTURED IMAGES USING GIBBS RANDOM-FIELDS [J].
DERIN, H ;
ELLIOTT, H .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (01) :39-55
[4]  
Duda R. O., 1973, PATTERN CLASSIFICATI, V3
[5]   Spatial registration and normalization of images [J].
Friston, KJ ;
Ashburner, J ;
Frith, CD ;
Poline, JB ;
Heather, JD ;
Frackowiak, RSJ .
HUMAN BRAIN MAPPING, 1995, 3 (03) :165-189
[6]   EM algorithm for image segmentation initialized by a tree structure scheme [J].
Fwu, JK ;
Djuric, PM .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (02) :349-352
[7]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[8]   NONLINEAR ANISOTROPIC FILTERING OF MRI DATA [J].
GERIG, G ;
KUBLER, O ;
KIKINIS, R ;
JOLESZ, FA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (02) :221-232
[9]   Report on the theory of ferromagnetism [J].
Ising, E .
ZEITSCHRIFT FUR PHYSIK, 1925, 31 :253-258
[10]  
JAHNE B, 1993, DIGITAL IMAGE PROCES, P200