Worst-case behavior of the MVCA heuristic for the minimum labeling spanning tree problem

被引:31
作者
Xiong, YP
Golden, B [1 ]
Wasil, E
机构
[1] Univ Maryland, RH Smith Sch Business, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] American Univ, Kogod Sch Business, Washington, DC 20016 USA
关键词
algorithm; NP-hard; spanning trees; linear programming;
D O I
10.1016/j.orl.2004.03.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we review recent work on the minimum labeling spanning tree problem and obtain a new worst-case ratio for the MVCA heuristic. We also present a family of graphs in which the worst-case ratio can be attained. This implies that the new ratio cannot be improved any further. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 80
页数:4
相关论文
共 4 条
[1]   Local search for the minimum label spanning tree problem with bounded color classes [J].
Brüggemann, T ;
Monnot, J ;
Woeginger, GJ .
OPERATIONS RESEARCH LETTERS, 2003, 31 (03) :195-201
[2]   The minimum labeling spanning trees [J].
Chang, RS ;
Leu, SJ .
INFORMATION PROCESSING LETTERS, 1997, 63 (05) :277-282
[3]   On the minimum label spanning tree problem [J].
Krumke, SO ;
Wirth, HC .
INFORMATION PROCESSING LETTERS, 1998, 66 (02) :81-85
[4]   A note on the minimum label spanning tree [J].
Wan, YY ;
Chen, GL ;
Xu, YL .
INFORMATION PROCESSING LETTERS, 2002, 84 (02) :99-101