Spectral decomposition of contracting probabilistic dynamical systems

被引:4
作者
Antoniou, I
Bosco, F
机构
[1] Int Solvay Inst Phys, B-1050 Brussels, Belgium
[2] Int Solvay Inst Chem, B-1050 Brussels, Belgium
[3] Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil
关键词
D O I
10.1016/S0960-0779(97)00119-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study probabilistic couplings of a finite class of linear contractions of the unit interval. For this reason we call these systems 'contracting probabilistic dynamical systems'. The resulting system is a stationary Markov process with deterministic outcomes. Each outcome results from the application of one of the contractions. The selection of each contraction is conditioned probabilistically. We study these systems through the spectral properties of their corresponding sthocastic and Markov operators. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:401 / 418
页数:18
相关论文
共 36 条
[21]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[22]  
Imai I., 1992, APPL HYPERFUNCTION T
[23]   Distribution functions and the Riemann zeta function [J].
Jessen, Borge ;
Wintner, Aurel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1935, 38 (1-3) :48-88
[24]  
Kaneko A., 1988, MATH APPL JAPANESE S
[25]   On symmetric Bernoulli convolutions [J].
Kershner, R ;
Wintner, A .
AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 :541-548
[26]  
Kifer Yuri, 1986, Progress in Probability and Statistics, V10
[27]  
Kryloff N, 1937, CR HEBD ACAD SCI, V204, P1386
[28]  
Lasota A., 1994, Applied Mathematical Sciences, V2nd
[29]  
LIU PD, 1906, LECT NOTES MATH
[30]  
MORITA T, 1985, OSAKA J MATH, V22, P489