DYRK1A and DYRK3 Promote Cell Survival through Phosphorylation and Activation of SIRT1

被引:183
作者
Guo, Xiumei
Williams, Jason G. [1 ]
Schug, Thaddeus T.
Li, Xiaoling
机构
[1] NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA
基金
美国国家卫生研究院;
关键词
PROTEIN-KINASE DYRK1A; SUBSTRATE-SPECIFICITY; TRANSCRIPTION FACTORS; DEACETYLASE ACTIVITY; DUAL-SPECIFICITY; DNA-DAMAGE; STRESS; FAMILY; REGULATOR; P53;
D O I
10.1074/jbc.M110.102574
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DYRK1A (the dual specificity tyrosine phosphorylation-regulated kinase 1A) plays an important role in body growth and brain physiology. Overexpression of this kinase has been associated with the development of Down syndrome in both human and animal models, whereas single copy loss-of-function of DYRK1A leads to increased apoptosis and decreased brain size. Although more than a dozen of DYRK1A targets have been identified, the molecular basis of its involvement in neuronal development remains unclear. Here we show that DYRK1A and another pro-survival member of the DYRK family, DYRK3, promote cell survival through phosphorylation and activation of SIRT1, an NAD(+)-dependent protein deacetylase that is essential in a variety of physiological processes including stress response and energy metabolism. DYRK1A and DYRK3 directly phosphorylate SIRT1 at Thr(522), promoting deacetylation of p53. A SIRT1 phosphorylation mimetic (SIRT1 T522D) displays elevated deacetylase activity, thus inhibiting cell apoptosis. Conversely, a SIRT1 dephosphorylation mimetic (SIRT1 T522V) fails to mediate DYRK-induced deacetylation of p53 and cell survival. We show that knockdown of endogenous DYRK1A and DYRK3 leads to hypophosphorylation of SIRT1, sensitizing cells to DNA damage-induced cell death. We also provide evidence that phosphorylation of Thr(522) activates SIRT1 by promoting product release, thereby increasing its enzymatic turnover. Taken together, our findings provide a novel mechanism by which two anti-apoptotic DYRK members promote cell survival through direct modification of SIRT1. These findings may have important implications in understanding the molecular mechanisms of tumorigenesis, Down syndrome, and aging.
引用
收藏
页码:13223 / 13232
页数:10
相关论文
共 45 条
[1]  
Becker W, 1999, PROG NUCLEIC ACID RE, V62, P1
[2]   Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases [J].
Becker, W ;
Weber, Y ;
Wetzel, K ;
Eirmbter, K ;
Tejedor, FJ ;
Joost, HG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (40) :25893-25902
[3]   Genetic links between diet and lifespan: shared mechanisms from yeast to humans [J].
Bishop, Nicholas A. ;
Guarente, Leonard .
NATURE REVIEWS GENETICS, 2007, 8 (11) :835-844
[4]   The Sir2 family of protein deacetylases [J].
Blander, G ;
Guarente, L .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :417-435
[5]   SIRT1 shows no substrate specificity in vitro [J].
Blander, G ;
Olejnik, J ;
Olejnik, EK ;
Mcdonagh, T ;
Haigis, M ;
Yaffe, MB ;
Guarente, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (11) :9780-9785
[6]   Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases [J].
Borra, MT ;
Langer, MR ;
Slama, JT ;
Denu, JM .
BIOCHEMISTRY, 2004, 43 (30) :9877-9887
[7]   How does SIRT1 affect metabolism, senescence and cancer? [J].
Brooks, Christopher L. ;
Gu, Wei .
NATURE REVIEWS CANCER, 2009, 9 (02) :123-128
[8]   Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J].
Brunet, A ;
Sweeney, LB ;
Sturgill, JF ;
Chua, KF ;
Greer, PL ;
Lin, YX ;
Tran, H ;
Ross, SE ;
Mostoslavsky, R ;
Cohen, HY ;
Hu, LS ;
Cheng, HL ;
Jedrychowski, MP ;
Gygi, SP ;
Sinclair, DA ;
Alt, FW ;
Greenberg, ME .
SCIENCE, 2004, 303 (5666) :2011-2015
[9]   Differing substrate specificities of members of the DYRK family of arginine-directed protein kinases [J].
Campbell, LE ;
Proud, CG .
FEBS LETTERS, 2002, 510 (1-2) :31-36
[10]   Increased expression of Dyrk1a in HPV16 immortalized keratinocytes enable evasion of apoptosis [J].
Chang, Hung-Shu ;
Lin, Ching-Hui ;
Yang, Chien-Hui ;
Yen, Ming-Shyen ;
Lai, Chiung-Ru ;
Chen, Yi-Rong ;
Liang, Yuh-Jin ;
Yu, Winston C. Y. .
INTERNATIONAL JOURNAL OF CANCER, 2007, 120 (11) :2377-2385