Galaxy Zoo: reproducing galaxy morphologies via machine learning☆

被引:147
作者
Banerji, Manda [1 ,2 ]
Lahav, Ofer [1 ]
Lintott, Chris J. [3 ]
Abdalla, Filipe B. [1 ]
Schawinski, Kevin [4 ,5 ]
Bamford, Steven P. [6 ]
Andreescu, Dan [7 ]
Murray, Phil [8 ]
Raddick, M. Jordan [9 ]
Slosar, Anze [10 ,11 ]
Szalay, Alex [9 ]
Thomas, Daniel [12 ]
Vandenberg, Jan [9 ]
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
[2] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[3] Univ Oxford, Dept Phys, Oxford OX1 3RH, England
[4] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[5] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA
[6] Univ Nottingham, Sch Phys & Astron, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England
[7] LinkLab, Bronx, NY 10471 USA
[8] Fingerprint Digital Media, Newtownards BT23 7GY, Co Down, North Ireland
[9] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[10] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA
[11] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[12] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England
关键词
methods: data analysis; galaxies: general; DIGITAL-SKY-SURVEY; ARTIFICIAL NEURAL-NETWORKS; ESTIMATING PHOTOMETRIC REDSHIFTS; AUTOMATED CLASSIFICATION; STELLAR SPECTRA; COLOR;
D O I
10.1111/j.1365-2966.2010.16713.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present morphological classifications obtained using machine learning for objects in the Sloan Digital Sky Survey DR6 that have been classified by Galaxy Zoo into three classes, namely early types, spirals and point sources/artefacts. An artificial neural network is trained on a subset of objects classified by the human eye, and we test whether the machine-learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours and parameters associated with profile fitting are reasonable in separating the objects into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as concentration and texture. The adaptive moments, concentration and texture parameters alone cannot distinguish between early type galaxies and the point sources/artefacts. Using a set of 12 parameters, the neural network is able to reproduce the human classifications to better than 90 per cent for all three morphological classes. We find that using a training set that is incomplete in magnitude does not degrade our results given our particular choice of the input parameters to the network. We conclude that it is promising to use machine-learning algorithms to perform morphological classification for the next generation of wide-field imaging surveys and that the Galaxy Zoo catalogue provides an invaluable training set for such purposes.
引用
收藏
页码:342 / 353
页数:12
相关论文
共 29 条
  • [21] Observational evidence for AGN feedback in early-type galaxies
    Schawinski, Kevin
    Thomas, Daniel
    Sarzi, Marc
    Maraston, Claudia
    Kaviraj, Sugata
    Joo, Seok-Joo
    Yi, Sukyoung K.
    Silk, Joseph
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 382 (04) : 1415 - 1431
  • [22] Galaxy Zoo: a sample of blue early-type galaxies at low redshift
    Schawinski, Kevin
    Lintott, Chris
    Thomas, Daniel
    Sarzi, Marc
    Andreescu, Dan
    Bamford, Steven P.
    Kaviraj, Sugata
    Khochfar, Sadegh
    Land, Kate
    Murray, Phil
    Nichol, Robert C.
    Raddick, M. Jordan
    Slosar, Anze
    Szalay, Alex
    VandenBerg, Jan
    Yi, Sukyoung K.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (02) : 818 - 829
  • [23] Statistical properties of bright galaxies in the Sloan Digital Sky Survey photometric system
    Shimasaku, K
    Fukugita, M
    Doi, M
    Hamabe, M
    Ichikawa, T
    Okamura, S
    Sekiguchi, M
    Yasuda, N
    Brinkmann, J
    Csabai, I
    Ichikawa, SI
    Ivezic, Z
    Kunszt, PZ
    Schneider, DP
    Szokoly, GP
    Watanabe, M
    York, DG
    [J]. ASTRONOMICAL JOURNAL, 2001, 122 (03) : 1238 - 1250
  • [24] Storrie-Lombardi M. C., 1992, MNRAS, V259, P8, DOI DOI 10.1093/mnras/259.1.8P
  • [25] Color separation of galaxy types in the Sloan Digital Sky Survey imaging data
    Strateva, I
    Ivezic, Z
    Knapp, GR
    Narayanan, VK
    Strauss, MA
    Gunn, JE
    Lupton, RH
    Schlegel, D
    Bahcall, NA
    Brinkmann, J
    Brunner, RJ
    Budavári, T
    Csabai, I
    Castander, FJ
    Doi, M
    Fukugita, M
    Györy, Z
    Hamabe, M
    Hennessy, G
    Ichikawa, T
    Kunszt, PZ
    Lamb, DQ
    McKay, TA
    Okamura, S
    Racusin, J
    Sekiguchi, M
    Schneider, DP
    Shimasaku, K
    York, D
    [J]. ASTRONOMICAL JOURNAL, 2001, 122 (04) : 1861 - 1874
  • [26] van den Bergh S., 1998, Galaxy Morphology and Classification
  • [27] AUTOMATED CLASSIFICATION OF STELLAR SPECTRA .1. INITIAL RESULTS WITH ARTIFICIAL NEURAL NETWORKS
    VONHIPPEL, T
    STORRIE-LOMBARDI, LJ
    STORRIE-LOMBARDI, MC
    IRWIN, MJ
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1994, 269 (01) : 97 - 104
  • [28] Morphological classification of galaxies using photometric parameters: The concentration index versus the coarseness parameter
    Yamauchi, C
    Ichikawa, SI
    Doi, M
    Yasuda, N
    Yagi, M
    Fukugita, M
    Okamura, S
    Nakamura, O
    Sekiguchi, M
    Goto, T
    [J]. ASTRONOMICAL JOURNAL, 2005, 130 (04) : 1545 - 1557
  • [29] The Sloan Digital Sky Survey: Technical summary
    York, DG
    Adelman, J
    Anderson, JE
    Anderson, SF
    Annis, J
    Bahcall, NA
    Bakken, JA
    Barkhouser, R
    Bastian, S
    Berman, E
    Boroski, WN
    Bracker, S
    Briegel, C
    Briggs, JW
    Brinkmann, J
    Brunner, R
    Burles, S
    Carey, L
    Carr, MA
    Castander, FJ
    Chen, B
    Colestock, PL
    Connolly, AJ
    Crocker, JH
    Csabai, I
    Czarapata, PC
    Davis, JE
    Doi, M
    Dombeck, T
    Eisenstein, D
    Ellman, N
    Elms, BR
    Evans, ML
    Fan, XH
    Federwitz, GR
    Fiscelli, L
    Friedman, S
    Frieman, JA
    Fukugita, M
    Gillespie, B
    Gunn, JE
    Gurbani, VK
    de Haas, E
    Haldeman, M
    Harris, FH
    Hayes, J
    Heckman, TM
    Hennessy, GS
    Hindsley, RB
    Holm, S
    [J]. ASTRONOMICAL JOURNAL, 2000, 120 (03) : 1579 - 1587