Mechanical elasticity of vapour-liquid-solid grown GaN nanowires

被引:27
作者
Chen, Yunxia
Stevenson, Ian
Pouy, Rebecca
Wang, Lidong
McIlroy, David N.
Pounds, Tyler
Norton, M. Grant
Aston, D. Eric
机构
[1] Univ Idaho, Dept Chem Engn, Moscow, ID 83844 USA
[2] Univ Idaho, Dept Phys, Moscow, ID 83844 USA
[3] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
关键词
D O I
10.1088/0957-4484/18/13/135708
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mechanical elasticity of hexagonal wurtzite GaN nanowires with hexagonal cross sections grown through a vapour-liquid-solid (VLS) method was investigated using a three-point bending method with a digital-pulsed force mode (DPFM) atomic force microscope (AFM). In a diameter range of 57-135 nm, bending deflection and effective stiffness, or spring constant, profiles were recorded over the entire length of end-supported GaN nanowires and compared to the classic elastic beam models. Profiles reveal that the bending behaviour of the smallest nanowire ( 57.0 nm in diameter) is as a fixed beam, while larger nanowires (89.3-135.0 nm in diameter) all show simple-beam boundary conditions. Diameter dependence on the stiffness and elastic modulus are observed for these GaN nanowires. The GaN nanowire of 57.0 nm diameter displays the lowest stiffness (0.98 N m(-1)) and the highest elastic modulus ( 400 +/- 15 GPa). But with increasing diameter, elastic modulus decreases, while stiffness increases. Elastic moduli for most tested nanowires range from 218 to 317 GPa, which approaches or meets the literature values for bulk single crystal and GaN nanowires with triangular cross sections from other investigators. The present results together with further tests on plastic and fracture processes will provide fundamental information for the development of GaN nanowire devices.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Measurement of the Young's moduli of individual polyethylene oxide and glass nanofibres [J].
Bellan, LM ;
Kameoka, J ;
Craighead, HG .
NANOTECHNOLOGY, 2005, 16 (08) :1095-1099
[2]   Catalytic growth and characterization of gallium nitride nanowires [J].
Chen, CC ;
Yeh, CC ;
Chen, CH ;
Yu, MY ;
Liu, HL ;
Wu, JJ ;
Chen, KH ;
Chen, LC ;
Peng, JY ;
Chen, YF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (12) :2791-2798
[3]   Size dependence of Young's modulus in ZnO nanowires [J].
Chen, CQ ;
Shi, Y ;
Zhang, YS ;
Zhu, J ;
Yan, YJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[4]   On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires [J].
Chen, Yunxia ;
Dorgan, Brian L., Jr. ;
McIlroy, David N. ;
Aston, D. Eric .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (10)
[5]   Elastic modulus of polypyrrole nanotubes [J].
Cuenot, S ;
Demoustier-Champagne, S ;
Nysten, B .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1690-1693
[6]   Hardness and fracture toughness of bulk single crystal gallium nitride [J].
Drory, MD ;
Ager, JW ;
Suski, T ;
Grzegory, I ;
Porowski, S .
APPLIED PHYSICS LETTERS, 1996, 69 (26) :4044-4046
[7]  
Gere J.M., 1997, Mechanics of Materials, V4th ed.
[8]   A generalized description of the elastic properties of nanowires [J].
Heidelberg, Andreas ;
Ngo, Lien T. ;
Bin Wu ;
Phillips, Mick A. ;
Sharma, Shashank ;
Kamins, Theodore I. ;
Sader, John E. ;
Boland, John J. .
NANO LETTERS, 2006, 6 (06) :1101-1106
[9]   Logic gates and computation from assembled nanowire building blocks [J].
Huang, Y ;
Duan, XF ;
Cui, Y ;
Lauhon, LJ ;
Kim, KH ;
Lieber, CM .
SCIENCE, 2001, 294 (5545) :1313-1317
[10]   Gallium nitride nanowire nanodevices [J].
Huang, Y ;
Duan, XF ;
Cui, Y ;
Lieber, CM .
NANO LETTERS, 2002, 2 (02) :101-104