Robust decentralized control for multimachine power systems

被引:123
作者
Wang, YY [1 ]
Hill, DJ
Guo, GX
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Univ Sydney, Sydney, NSW 2006, Australia
[3] Data Storage Inst Singapore, Singapore, Singapore
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1998年 / 45卷 / 03期
关键词
feedback linearization; nonlinear systems; power system control; robust control; stability enhancement;
D O I
10.1109/81.662700
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new robust linear decentralized controller is proposed to enhance the transient stability of nonlinear multimachine power systems. Only local measurements are required in the proposed controller, The feedback gain of each generator is obtained by solving an algebraic Riccati equation based on the bounds of the machine parameters, The stability analysis shows that the decentralized controller can guarantee the system stability over the whole operating region and regardless of fault locations or parameter uncertainties of the transmission network, Compared with nonlinear controllers, linear controllers are of simpler structure and easier to be implemented, A three-machine power system is considered as an application example, Simulation results show that despite the interconnections between different generators, nonlinearities in the system, different operating points, and different fault locations, the proposed robust decentralized controller can greatly enhance power system transient stability.
引用
收藏
页码:271 / 279
页数:9
相关论文
共 19 条
[1]  
Bergen AR., 1986, POWER SYSTEMS ANAL
[2]   STABILIZING A MULTIMACHINE POWER-SYSTEM VIA DECENTRALIZED FEEDBACK LINEARIZING EXCITATION CONTROL [J].
CHAPMAN, JW ;
ILIC, MD ;
KING, CA ;
ENG, L ;
KAUFMAN, H .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1993, 8 (03) :830-839
[3]   A NONLINEAR CONTROL DESIGN FOR POWER-SYSTEMS [J].
GAO, L ;
CHEN, L ;
FAN, YS ;
MA, HW .
AUTOMATICA, 1992, 28 (05) :975-979
[4]   ROBUST STABILIZATION OF UNCERTAIN LINEAR-SYSTEMS - QUADRATIC STABILIZABILITY AND H INFINITY-CONTROL THEORY [J].
KHARGONEKAR, PP ;
PETERSEN, IR ;
ZHOU, KM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (03) :356-361
[5]   CONDITIONS FOR NONNEGATIVENESS OF PARTITIONED MATRICES [J].
KREINDLE.E ;
JAMESON, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (01) :147-&
[6]  
Kundur P., 1994, POWER SYSTEM STABILI
[7]   NONLINEAR STABILIZING CONTROL OF MULTIMACHINE SYSTEMS [J].
LU, Q ;
SUN, YZ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1989, 4 (01) :236-241
[8]   NONLINEAR FIELD VOLTAGE CONTROL OF A SYNCHRONOUS GENERATOR USING FEEDBACK LINEARIZATION [J].
MIELCZARSKI, W ;
ZAJACZKOWSKI, AM .
AUTOMATICA, 1994, 30 (10) :1625-1630
[9]  
MIELCZARSKI W, 1990, 11 IFAC WORLD C TALL
[10]  
QIU Z, 1992, IEEE T CIRCUITS SYST, V39, P470