Using formal concept analysis for microarray data comparison

被引:3
作者
Choi, V. [1 ]
Huang, Y. [2 ]
Lam, V. [3 ]
Potter, D. [3 ]
Laubenbacher, R. [3 ]
Duca, K. [3 ]
机构
[1] Virginia Tech, Dept Comp Sci, 660 McBryde Hall, Blacksburg, VA 24061 USA
[2] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08854 USA
[3] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA
来源
PROCEEDINGS OF THE 5TH ASIA- PACIFIC BIOINFOMATICS CONFERENCE 2007 | 2007年 / 5卷
关键词
D O I
10.1142/9781860947995_0009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microarray technologies, which can measure tens of thousands of gene expression values simultaneously in a single experiment, have become a common research method for biomedical researchers. Computational tools to analyze microarray data for biological discovery are needed. In this paper, we investigate the feasibility of using Formal Concept Analysis (FCA) as a tool for microarray data analysis. The method of FCA builds a (concept) lattice from the experimental data together with additional biological information. For microarray data, each vertex of the lattice corresponds to a subset of genes that are grouped together according to their expression values and some biological information related to gene function. The lattice structure of these gene sets might reflect biological relationships in the dataset. Similarities and differences between experiments can then be investigated by comparing their corresponding lattices according to various graph measures. We apply our method to microarray data derived from influenza infected mouse lung tissue and healthy controls. Our preliminary results show the promise of our method as a tool for microarray data analysis.
引用
收藏
页码:57 / +
页数:2
相关论文
共 17 条
[1]   Constraint-based concept mining and its application to microarray data analysis [J].
Besson, Jeremy ;
Robardet, Celine ;
Boulicaut, Jean-Francois ;
Rome, Sophie .
INTELLIGENT DATA ANALYSIS, 2005, 9 (01) :59-82
[2]  
Besson R, 2004, LECT NOTES ARTIF INT, V3056, P615
[3]   Biclustering of gene expression data by non-smooth non-negative matrix factorization [J].
Carmona-Saez, P ;
Pascual-Marqui, RD ;
Tirado, F ;
Carazo, JM ;
Pascual-Montano, A .
BMC BIOINFORMATICS, 2006, 7 (1)
[4]  
CHOI V, FASTER ALGORITHMS CO
[5]  
Deonier R.C., 2005, COMPUTATIONAL GENOME
[6]  
Ganter B., 1999, Formal Concept Analysis: Mathematical Foundations
[7]  
Gattiker Alexandre, 2002, Appl Bioinformatics, V1, P107
[8]   A compendium of gene expression in normal human tissues [J].
Hsiao, LL ;
Dangond, F ;
Yoshida, T ;
Hong, R ;
Jensen, RV ;
Misra, J ;
Dillon, W ;
Lee, KF ;
Clark, KE ;
Haverty, P ;
Weng, ZP ;
Mutter, GL ;
Frosch, MP ;
MacDonald, ME ;
Milford, EL ;
Crum, CP ;
Bueno, R ;
Pratt, RE ;
Mahadevappa, M ;
Warrington, JA ;
Stephanopoulos, G ;
Stephanopoulos, G ;
Gullans, SR .
PHYSIOLOGICAL GENOMICS, 2001, 7 (02) :97-104
[9]   The PROSITE database [J].
Hulo, Nicolas ;
Bairoch, Amos ;
Bulliard, Virginie ;
Cerutti, Lorenzo ;
De Castro, Edouard ;
Langendijk-Genevaux, Petra S. ;
Pagni, Marco ;
Sigrist, Christian J. A. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D227-D230
[10]  
KJERSTI A, MICROARRAY DATA MINI