Nuclear magnetic resonance imaging with 90-nm resolution

被引:197
作者
Mamin, H. J.
Poggio, M.
Degen, C. L.
Rugar, D.
机构
[1] IBM Corp, Almaden Res Ctr, Div Res, San Jose, CA 95120 USA
[2] Stanford Univ, Ctr Probing Nanoscale, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nnano.2007.105
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnetic resonance imaging (MRI) is a powerful imaging technique that typically operates on the scale of millimetres to micrometres. Conventional MRI is based on the manipulation of nuclear spins with radio-frequency fields, and the subsequent detection of spins with induction-based techniques. An alternative approach, magnetic resonance force microscopy (MRFM), uses force detection to overcome the sensitivity limitations of conventional MRI. Here, we show that the two-dimensional imaging of nuclear spins can be extended to a spatial resolution better than 100 nm using MRFM. The imaging of F-19 nuclei in a patterned CaF2 test object was enabled by a detection sensitivity of roughly 1,200 nuclear spins at a temperature of 600 mK. To achieve this sensitivity, we developed high-moment magnetic tips that produced field gradients up to 1.4 x 10(6) Tm-1, and implemented a measurement protocol based on force-gradient detection of naturally occurring spin fluctuations. The resulting detection volume was less than 650 zeptolitres. This is 60,000 times smaller than the previous smallest volume for nuclear magnetic resonance microscopy, and demonstrates the feasibility of pushing MRI into the nanoscale regime.
引用
收藏
页码:301 / 306
页数:6
相关论文
共 29 条
[1]   Force-detected magnetic resonance in a field gradient of 250 000 Tesla per meter [J].
Bruland, KJ ;
Dougherty, WM ;
Garbini, JL ;
Sidles, JA ;
Chao, SH .
APPLIED PHYSICS LETTERS, 1998, 73 (21) :3159-3161
[2]   Nanometer-scale magnetic resonance imaging [J].
Chao, SH ;
Dougherty, WM ;
Garbini, JL ;
Sidles, JA .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (05) :1175-1181
[3]  
Chui B. W., 2003, 12 INT C SOL STAT SE
[4]   Magnetic resonance imaging of biological cells [J].
Ciobanu, L ;
Webb, AG ;
Pennington, CH .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2003, 42 (3-4) :69-93
[5]   3D MR microscopy with resolution 3.7 μm by 3.3 μm by 3.3 μm [J].
Ciobanu, L ;
Seeber, DA ;
Pennington, CH .
JOURNAL OF MAGNETIC RESONANCE, 2002, 158 (1-2) :178-182
[6]   Microscale localized spectroscopy with a magnetic resonance force microscope [J].
Degen, CL ;
Lin, Q ;
Hunkeler, A ;
Meier, U ;
Tomaselli, M ;
Meier, BH .
PHYSICAL REVIEW LETTERS, 2005, 94 (20)
[7]   Force-gradient detected nuclear magnetic resonance [J].
Garner, SR ;
Kuehn, S ;
Dawlaty, JM ;
Jenkins, NE ;
Marohn, JA .
APPLIED PHYSICS LETTERS, 2004, 84 (25) :5091-5093
[8]   Magnetic damping losses of tipped cantilevers [J].
Giorgio, M ;
Meier, B ;
Magin, R ;
Meyer, E .
NANOTECHNOLOGY, 2006, 17 (03) :871-880
[9]   Limits to magnetic resonance microscopy [J].
Glover, P ;
Mansfield, P .
REPORTS ON PROGRESS IN PHYSICS, 2002, 65 (10) :1489-1511
[10]   The magnetic-resonance force microscope: A new tool for high-resolution, 3-D, subsurface scanned probe imaging [J].
Hammel, PC ;
Pelekhov, DV ;
Wigen, PE ;
Gosnell, TR ;
Midzor, MM ;
Roukes, ML .
PROCEEDINGS OF THE IEEE, 2003, 91 (05) :789-798