High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production

被引:123
作者
Ohgren, Karin
Vehmaanpera, Jari
Siika-Aho, Matti
Galbe, Mats
Viikari, Liisa
Zacchi, Guido
机构
[1] Lund Univ, Dept Chem Engn, SE-22100 Lund, Sweden
[2] Roal Oy, FI-05201 Rajamaki, Finland
[3] VTT, FI-02044 Espoo, Finland
关键词
prehydrolysis; SSF; ethanol production; ethanol yield; steam pretreatment; thermo-active cellulase complex;
D O I
10.1016/j.enzmictec.2006.05.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
As a consequence of heightened concern for the greenhouse effect, depleting oil reserves and skyrocketing oil prices, renewable fuels, Such as bioethanol, are becoming increasingly important. Cellulosic biomass like wood, agricultural residue and herbaceous material is a huge, cheap natural resource that can be used for ethanol production. Decreasing production costs through technological development is, however, still needed to make ethanol from cellulosics economically feasible. In this study, the effect on overall ethanol yield of an enzymatic prehydrolysis prior to simultaneous saccharification and fermentation (SSF) of steam pretreated corn stover was investigated. Two enzyme mixtures were utilised. A mixture of commercially available enzymes (Novozymes A/S, Baegersvaerd, Denmark) was compared with a developmental thermo-active cellulase complex produced by Roal Oy (Rajam&i, Finland). The thermoactive preparation comprised three essential cellulases and one xylanase enzyme. The prehydrolysis was, under the conditions evaluated, found to have no or negative effect on the overall ethanol yield. Longer prehydrolysis time resulted in a larger decrease in overall ethanol yield than shorter prehydrolysis. Using the experimental thermo-active enzyme mixture was shown to give a higher glucose concentration after prehydrolysis than when the commercial enzyme mixture was used in similar experiments. The highest ethanol concentration, 33.8 g/L, was reached in the SSF with 11.5% water-insoluble substances using the developmental thermoactive cellulase complex, and 1.8 g/L compressed baker's yeast. This concentration corresponded to 80.2% overall ethanol yield based on the glucose content in the raw material. However, if the xylose present in the beer at the end of the SSF could be fermented to ethanol, another 12.6 g ethanol/L could theoretically be produced (0.51 g ethanol/g xylose). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:607 / 613
页数:7
相关论文
共 38 条
[1]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[2]   Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce [J].
Alkasrawi, M ;
Rudolf, A ;
Lidén, G ;
Zacchi, G .
ENZYME AND MICROBIAL TECHNOLOGY, 2006, 38 (1-2) :279-286
[3]  
DUMITRIU S, 1998, POLYSACCHARIDES
[4]   OPTIMIZATION OF TEMPERATURE AND ENZYME CONCENTRATION IN THE ENZYMATIC SACCHARIFICATION OF STEAM-PRETREATED WILLOW [J].
EKLUND, R ;
GALBE, M ;
ZACCHI, G .
ENZYME AND MICROBIAL TECHNOLOGY, 1990, 12 (03) :225-228
[5]   Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass [J].
Esteghlalian, A ;
Hashimoto, AG ;
Fenske, JJ ;
Penner, MH .
BIORESOURCE TECHNOLOGY, 1997, 59 (2-3) :129-136
[6]  
FAN LT, 1982, ADV BIOCHEM ENG, V23, P157, DOI DOI 10.1007/3540116982_
[7]   Ethanol can contribute to energy and environmental goals [J].
Farrell, AE ;
Plevin, RJ ;
Turner, BT ;
Jones, AD ;
O'Hare, M ;
Kammen, DM .
SCIENCE, 2006, 311 (5760) :506-508
[8]  
Hirasawa R, 2001, FEMS MICROBIOL LETT, V194, P159, DOI 10.1016/S0378-1097(00)00521-8
[9]   INHIBITION OF TRICHODERMA-REESEI CELLULASE BY SUGARS AND SOLVENTS [J].
HOLTZAPPLE, M ;
COGNATA, M ;
SHU, Y ;
HENDRICKSON, C .
BIOTECHNOLOGY AND BIOENGINEERING, 1990, 36 (03) :275-287
[10]  
JAQUES K, 1999, ALCOHOL TXB REFERENC