Electrical communication between glucose oxidase and electrodes mediated by phenothiazine-labeled poly(ethylene oxide) bonded to lysine residues on the enzyme surface

被引:26
作者
Ban, K [1 ]
Ueki, T [1 ]
Tamada, Y [1 ]
Saito, T [1 ]
Imabayashi, S [1 ]
Watanabe, M [1 ]
机构
[1] Yokohama Natl Univ, Dept Chem & Biotechnol, Yokohama, Kanagawa 2408501, Japan
关键词
D O I
10.1021/ac025872t
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A series of glucose oxidase (GOx) hybrids (GOx-phenothiazine-labeled poly(ethylene oxide) (PT-PEO)) capable of direct electrical communication with electrodes is synthesized by covalently modifying PT-PEO to lysine residues on the enzyme surface. The length of the PEO chain and the number of PT groups are systematically altered. After the PT-PEO modification, all the hybrids maintain more than 50% of enzyme activity relative to that of native GOx, although loss of the activity becomes greater with increasing PEO chain length. The catalytic currents i(cat), is observed at a potential more positive than 0.55 V after the addition of glucose, due to the intramolecular electron transfer (M from reduced forms of flavin adenine dinucletide (FADH(2)/FADH) to PT+ that are electrogenerated at the electrode. The icat value increases with the number of PT groups, indicating that most of the modified PT groups act as mediators. The magnitude of the i(cat) increase depends on the PEO chain length and reveals a maximum for PT-PEO with the molecular weight of 3000. In contrast, the i(cat) is almost constant for GOx-2-(10-phenothiazyl)propionic acid (PT-PA) hybrids with more than two PT groups synthesized by covalently modifying PT-PA to surface lysines, indicating that only a few key PT groups function as mediators. The maximum rate constant (130 s(-1)) for the ET from FADH2/FADH to PT+ is obtained for the GOx hybrid modified with five PT-PEO groups with the molecular weight of 3000.
引用
收藏
页码:910 / 917
页数:8
相关论文
共 28 条
[1]   Electron transfer reaction of glucose oxidase hybrids modified with phenothiazine via poly(ethylene oxide) spacer on acidic amino acid residues [J].
Aoki, S ;
Ishii, K ;
Ueki, T ;
Ban, K ;
Imabayashi, S ;
Watanabe, M .
CHEMISTRY LETTERS, 2002, (02) :256-257
[2]   INTRAMOLECULAR ELECTRON-TRANSFER RATES IN FERROCENE-DERIVATIZED GLUCOSE-OXIDASE [J].
BADIA, A ;
CARLINI, R ;
FERNANDEZ, A ;
BATTAGLINI, F ;
MIKKELSEN, SR ;
ENGLISH, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (16) :7053-7060
[3]   ENZYME ELECTRODE STUDIES OF GLUCOSE-OXIDASE MODIFIED WITH A REDOX MEDIATOR [J].
BARTLETT, PN ;
BRADFORD, VQ ;
WHITAKER, RG .
TALANTA, 1991, 38 (01) :57-63
[4]   Modification of glucose oxidase by the covalent attachment of a tetrathiafulvalene derivative [J].
Bartlett, PN ;
Booth, S ;
Caruana, DJ ;
Kilburn, JD ;
Santamaria, C .
ANALYTICAL CHEMISTRY, 1997, 69 (04) :734-742
[5]   Covalent attachment of osmium complexes to glucose oxidase and the application of the resulting modified enzyme in an enzyme switch responsive to glucose [J].
Battaglini, F ;
Bartlett, PN ;
Wang, JH .
ANALYTICAL CHEMISTRY, 2000, 72 (03) :502-509
[6]   A BRIEF SURVEY OF METHODS FOR PREPARING PROTEIN CONJUGATES WITH DYES, HAPTENS, AND CROSS-LINKING REAGENTS [J].
BRINKLEY, M .
BIOCONJUGATE CHEMISTRY, 1992, 3 (01) :2-13
[7]   FERROCENE-MEDIATED ENZYME ELECTRODE FOR AMPEROMETRIC DETERMINATION OF GLUCOSE [J].
CASS, AEG ;
DAVIS, G ;
FRANCIS, GD ;
HILL, HAO ;
ASTON, WJ ;
HIGGINS, IJ ;
PLOTKIN, EV ;
SCOTT, LDL ;
TURNER, APF .
ANALYTICAL CHEMISTRY, 1984, 56 (04) :667-671
[8]   DIRECT ELECTRICAL COMMUNICATION BETWEEN CHEMICALLY MODIFIED ENZYMES AND METAL-ELECTRODES .2. METHODS FOR BONDING ELECTRON-TRANSFER RELAYS TO GLUCOSE-OXIDASE AND D-AMINO-ACID OXIDASE [J].
DEGANI, Y ;
HELLER, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1988, 110 (08) :2615-2620
[9]   DIRECT ELECTRICAL COMMUNICATION BETWEEN CHEMICALLY MODIFIED ENZYMES AND METAL-ELECTRODES .1. ELECTRON-TRANSFER FROM GLUCOSE-OXIDASE TO METAL-ELECTRODES VIA ELECTRON RELAYS, BOUND COVALENTLY TO THE ENZYME [J].
DEGANI, Y ;
HELLER, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (06) :1285-1289
[10]  
Harris J. M., 1992, POLYETHYLENE GLYCOL