Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging

被引:117
作者
Eastwood, David S. [1 ,2 ]
Bayley, Paul M. [3 ]
Chang, Hee Jung [4 ]
Taiwo, Oluwadamilola O. [5 ]
Vila-Comamala, Joan [6 ]
Brett, Daniel J. L. [5 ]
Rau, Christoph [1 ,6 ,7 ]
Withers, Philip J. [1 ,2 ]
Shearing, Paul R. [5 ]
Grey, Clare P. [3 ,4 ]
Lee, Peter D. [1 ,2 ]
机构
[1] Univ Manchester, Sch Mat, Manchester X Ray Imaging Facil, Manchester M13 9PL, Lancs, England
[2] Res Complex Harwell, Harwell OX11 0FA, Berks, England
[3] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[4] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[5] UCL, Dept Chem Engn, London WC1E 7JE, England
[6] Diamond Light Source Ltd, Harwell OX11 0DE, Berks, England
[7] Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol, Chicago, IL 60611 USA
基金
英国工程与自然科学研究理事会;
关键词
IN-SITU; LIQUID ELECTROLYTES; BATTERIES; MICROSCOPY; DEPOSITION; GROWTH;
D O I
10.1039/c4cc03187c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrodeposition of metallic lithium is a major cause of failure in lithium batteries. The 3D microstructure of electrodeposited lithium 'moss' in liquid electrolytes has been characterised at submicron resolution for the first time. Using synchrotron X-ray phase contrast imaging we distinguish mossy metallic lithium microstructures from high surface area lithium salt formations by their contrasting X-ray attenuation.
引用
收藏
页码:266 / 268
页数:3
相关论文
共 26 条
[1]  
Balbuena P. B., 2004, Lithium-ion Batteries: Solid Electrolyte Interphase
[2]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[3]   In Situ, Real-Time Visualization of Electrochemistry Using Magnetic Resonance Imaging [J].
Britton, Melanie M. ;
Bayley, Paul M. ;
Howlett, Patrick C. ;
Davenport, Alison J. ;
Forsyth, Maria .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (17) :3019-3023
[4]  
Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]
[5]   Observation of microstructure and damage in materials by phase sensitive radiography and tomography [J].
Cloetens, P ;
PateyronSalome, M ;
Buffiere, JY ;
Peix, G ;
Baruchel, J ;
Peyrin, F ;
Schlenker, M .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (09) :5878-5886
[6]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[7]   Live scanning electron microscope observations of dendritic growth in lithium/polymer cells [J].
Dollé, M ;
Sannier, L ;
Beaudoin, B ;
Trentin, M ;
Tarascon, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (12) :A286-A289
[8]   The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes [J].
Eastwood, D. S. ;
Bradley, R. S. ;
Tariq, F. ;
Cooper, S. J. ;
Taiwo, O. O. ;
Gelb, J. ;
Merkle, A. ;
Brett, D. J. L. ;
Brandon, N. P. ;
Withers, P. J. ;
Lee, P. D. ;
Shearing, P. R. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2014, 324 :118-123
[9]   Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes [J].
Ely, David R. ;
Garcia, R. Edwin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :A662-A668
[10]   BEHAVIOR OF SECONDARY LITHIUM AND ALUMINUM-LITHIUM ELECTRODES IN PROPYLENE CARBONATE [J].
EPELBOIN, I ;
FROMENT, M ;
GARREAU, M ;
THEVENIN, J ;
WARIN, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (10) :2100-2104