Temperature-independent field-induced charge separation at doped organic/organic interfaces:: Experimental modeling of electrical properties

被引:99
作者
Kroger, Michael
Hamwi, Sami
Meyer, Jens
Dobbertin, Thomas
Riedl, Thomas
Kowalsky, Wolfgang
Johannes, Hans-Hermann
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Hochfrequenztech, D-38106 Braunschweig, Germany
[2] Osram Opto Semicond GmbH, D-93055 Regensburg, Germany
来源
PHYSICAL REVIEW B | 2007年 / 75卷 / 23期
关键词
D O I
10.1103/PhysRevB.75.235321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We examine field-induced charge-carrier separation at doped organic/organic heterointerfaces consisting of tetrafluorotetracyanoquinodimethane doped 4,4('),4(')-tris(N-1-naphtyl-N-phenylamino)-triphenylamine as hole-transporting layer and Li-doped 1,3,5-tri(phenyl-2-benzimidazole)-benzene as electron-transporting layer. Low-temperature I-V characteristics, thickness-dependent I-V characteristics, and Kelvin probe measurements are used to model the energy-level alignment at the interface. No explicit temperature dependence is observed. Thickness-dependent I-V characteristics and Kelvin probe measurements give evidence for a 5-nm-thin depletion layer adjacent to the interface. Consistent with our experimental results, we propose a model of electrons tunneling through the depletion zone from the highest occupied molecular orbit of the hole-transporting material to the lowest unoccupied molecular orbit of the electron-transporting material. This generates an electron-hole pair, which dissociates under the intense electric field close to the interface.
引用
收藏
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 2000, HDB CHEM PHYS
[2]  
BOHLER A, 1999, ORGANISCHE ELEKTROLU
[3]   Highly efficient white organic electroluminescent devices based on tandem architecture [J].
Chang, CC ;
Chen, JF ;
Hwang, SW ;
Chen, CH .
APPLIED PHYSICS LETTERS, 2005, 87 (25) :1-3
[4]   Effective connecting architecture for tandem organic light-emitting devices [J].
Chen, CW ;
Lu, YJ ;
Wu, CC ;
Wu, EHE ;
Chu, CW ;
Yang, Y .
APPLIED PHYSICS LETTERS, 2005, 87 (24) :1-3
[5]   Microcavity two-unit tandem organic light-emitting devices having a high efficiency [J].
Cho, TY ;
Lin, CL ;
Wu, CC .
APPLIED PHYSICS LETTERS, 2006, 88 (11)
[6]   Modification of the hole injection barrier in organic light-emitting devices studied by ultraviolet photoelectron spectroscopy [J].
Ding, XM ;
Hung, LM ;
Cheng, LF ;
Deng, ZB ;
Hou, XY ;
Lee, CS ;
Lee, ST .
APPLIED PHYSICS LETTERS, 2000, 76 (19) :2704-2706
[7]   Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine with tetrafluorotetracyanoquinodimethane [J].
Gao, WY ;
Kahn, A .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (01) :359-366
[8]   Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects [J].
Gao, WY ;
Kahn, A .
ORGANIC ELECTRONICS, 2002, 3 (02) :53-63
[9]   Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane:: A direct and inverse photoemission study [J].
Gao, WY ;
Kahn, A .
APPLIED PHYSICS LETTERS, 2001, 79 (24) :4040-4042
[10]   Transparent stacked organic light emitting devices. I. Design principles and transparent compound electrodes [J].
Gu, G ;
Parthasarathy, G ;
Burrows, PE ;
Tian, P ;
Hill, IG ;
Kahn, A ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (08) :4067-4075