Disulfide Bond Formation and Cysteine Exclusion in Gram-positive Bacteria

被引:75
作者
Daniels, Robert [3 ]
Mellroth, Peter [3 ]
Bernsel, Andreas [1 ]
Neiers, Fabrice [3 ]
Normark, Staffan [3 ]
von Heijne, Gunnar [1 ]
Henriques-Normark, Birgitta [2 ,3 ]
机构
[1] Stockholm Univ, Dept Biochem & Biophys, Ctr Biomembrane Res, SE-10691 Stockholm, Sweden
[2] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, SE-17177 Stockholm, Sweden
[3] Swedish Inst Infect Dis Control, S-17182 Solna, Sweden
基金
瑞典研究理事会;
关键词
STAPHYLOCOCCUS-AUREUS DSBA; ESCHERICHIA-COLI; PROTEIN SECRETION; BETA-LACTAMASE; BACILLUS-SUBTILIS; CRYSTAL-STRUCTURE; OUTER-MEMBRANE; CYTOPLASMIC MEMBRANE; SIGNAL PEPTIDES; OXIDOREDUCTASES;
D O I
10.1074/jbc.M109.081398
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most secretion pathways in bacteria and eukaryotic cells are challenged by the requirement for their substrate proteins to mature after they traverse a membrane barrier and enter a reactive oxidizing environment. For Gram-positive bacteria, the mechanisms that protect their exported proteins from misoxidation during their post-translocation maturation are poorly understood. To address this, we separated numerous bacterial species according to their tolerance for oxygen and divided their proteomes based on the predicted subcellular localization of their proteins. We then applied a previously established computational approach that utilizes cysteine incorporation patterns in proteins as an indicator of enzymatic systems that may exist in each species. The Sec-dependent exported proteins from aerobic Gram-positive Actinobacteria were found to encode cysteines in an even-biased pattern indicative of a functional disulfide bond formation system. In contrast, aerobic Gram-positive Firmicutes favor the exclusion of cysteines from both their cytoplasmic proteins and their substantially longer exported proteins. Supporting these findings, we show that Firmicutes, but not Actinobacteria, tolerate growth in reductant. We further demonstrate that the actinobacterium Corynebacterium glutamicum possesses disulfide-bonded proteins and two dimeric Dsb-like enzymes that can efficiently catalyze the formation of disulfide bonds. Our results suggest that cysteine exclusion is an important adaptive strategy against the challenges presented by oxidative environments.
引用
收藏
页码:3300 / 3309
页数:10
相关论文
共 62 条
[1]   The human PDI family: Versatility packed into a single fold [J].
Apperizeller-Herzog, Christian ;
Ellgaard, Lars .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2008, 1783 (04) :535-548
[2]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[3]   Thioredoxins and glutaredoxins as facilitators of protein folding [J].
Berndt, Carsten ;
Lillig, Christopher Horst ;
Holmgren, Arne .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2008, 1783 (04) :641-650
[4]   Prediction of membrane-protein topology from first principles [J].
Bernsel, Andreas ;
Viklund, Hakan ;
Falk, Jenny ;
Lindahl, Erik ;
von Heijne, Gunnar ;
Elofsson, Arne .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (20) :7177-7181
[5]   In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG [J].
Bessette, PH ;
Cotto, JJ ;
Gilbert, HF ;
Georgiou, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :7784-7792
[6]   Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis [J].
Bolhuis, A ;
Venema, G ;
Quax, WJ ;
Bron, S ;
van Dijl, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (35) :24531-24538
[7]   Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress [J].
Carmel-Harel, O ;
Storz, G .
ANNUAL REVIEW OF MICROBIOLOGY, 2000, 54 :439-461
[8]   Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli:: A comparative genomics approach [J].
Chen, SL ;
Hung, CS ;
Xu, JA ;
Reigstad, CS ;
Magrini, V ;
Sabo, A ;
Blasiar, D ;
Bieri, T ;
Meyer, RR ;
Ozersky, P ;
Armstrong, JR ;
Fulton, RS ;
Latreille, JP ;
Spieth, J ;
Hooton, TM ;
Mardis, ER ;
Hultgren, SJ ;
Gordon, JI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) :5977-5982
[9]   COTRANSLATIONAL FOLDING AND CALNEXIN BINDING DURING GLYCOPROTEIN-SYNTHESIS [J].
CHEN, W ;
HELENIUS, J ;
BRAAKMAN, I ;
HELENIUS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6229-6233
[10]   Delivering proteins for export from the cytosol [J].
Cross, Benedict C. S. ;
Sinning, Irmgard ;
Luirink, Joen ;
High, Stephen .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (04) :255-264