Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations

被引:45
作者
Costa, Rafael S. [1 ]
Machado, Daniel [1 ]
Rocha, Isabel [1 ]
Ferreira, Eugenio C. [1 ]
机构
[1] Univ Minho, IBB, Ctr Biol Engn, P-4710057 Braga, Portugal
关键词
Dynamic modeling; Escherichia coli metabolic network; Approximate rate equations; Parameter optimization; BIOCHEMICAL SYSTEMS ANALYSIS; STEADY-STATE APPROXIMATION; FORM TRYPANOSOMA-BRUCEI; IN-VIVO ANALYSIS; PARAMETER-ESTIMATION; LINLOG KINETICS; DATABASE; BIOLOGY; PATHWAY; OPTIMIZATION;
D O I
10.1016/j.biosystems.2010.03.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters, represent nowadays the limiting factor in the construction of such models. In this study, we compare four alternative modeling approaches based on Michaelis-Menten kinetics for the bi-molecular reactions and different types of simplified rate equations for the remaining reactions (generalized mass action, convenience kinetics, lin-log and power-law). Using the mechanistic model for Escherichia coli central carbon metabolism as a benchmark, we investigate the alternative modeling approaches through comparative simulations analyses. The good dynamic behavior and the powerful predictive capabilities obtained using the hybrid model composed of Michaelis-Menten and the approximate lin-log kinetics indicate that this is a possible suitable approach to model complex large-scale networks where the exact rate laws are unknown. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 71 条
[1]  
[Anonymous], 1966, Artificial_Intelligence_Through_Simulated Evolution
[2]  
[Anonymous], 1996, REGULATION CELLULAR, DOI DOI 10.1007/978-1-4613-1161-4
[3]   What controls glycolysis in bloodstream form Trypanosoma brucei? [J].
Bakker, BM ;
Michels, PAM ;
Opperdoes, FR ;
Westerhoff, HV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (21) :14551-14559
[4]   Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes [J].
Bakker, BM ;
Michels, PAM ;
Opperdoes, FR ;
Westerhoff, HV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (06) :3207-3215
[5]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[6]   Metabolomics: quantification of intracellular metabolite dynamics [J].
Buchholz, A ;
Hurlebaus, J ;
Wandrey, C ;
Takors, R .
BIOMOLECULAR ENGINEERING, 2002, 19 (01) :5-15
[7]   Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques [J].
Buchholz, A ;
Takors, R ;
Wandrey, C .
ANALYTICAL BIOCHEMISTRY, 2001, 295 (02) :129-137
[8]   Dynamic modeling of the central carbon metabolism of Escherichia coli [J].
Chassagnole, C ;
Noisommit-Rizzi, N ;
Schmid, JW ;
Mauch, K ;
Reuss, M .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (01) :53-73
[9]   Control of the threonine-synthesis pathway in Escherichia coli:: a theoretical and experimental approach [J].
Chassagnole, C ;
Fell, DA ;
Raïs, B ;
Kudla, B ;
Mazat, JP .
BIOCHEMICAL JOURNAL, 2001, 356 :433-444
[10]  
Conrad E.D., 2006, SYSTEM MODELING CELL, P97