Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations

被引:45
作者
Costa, Rafael S. [1 ]
Machado, Daniel [1 ]
Rocha, Isabel [1 ]
Ferreira, Eugenio C. [1 ]
机构
[1] Univ Minho, IBB, Ctr Biol Engn, P-4710057 Braga, Portugal
关键词
Dynamic modeling; Escherichia coli metabolic network; Approximate rate equations; Parameter optimization; BIOCHEMICAL SYSTEMS ANALYSIS; STEADY-STATE APPROXIMATION; FORM TRYPANOSOMA-BRUCEI; IN-VIVO ANALYSIS; PARAMETER-ESTIMATION; LINLOG KINETICS; DATABASE; BIOLOGY; PATHWAY; OPTIMIZATION;
D O I
10.1016/j.biosystems.2010.03.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters, represent nowadays the limiting factor in the construction of such models. In this study, we compare four alternative modeling approaches based on Michaelis-Menten kinetics for the bi-molecular reactions and different types of simplified rate equations for the remaining reactions (generalized mass action, convenience kinetics, lin-log and power-law). Using the mechanistic model for Escherichia coli central carbon metabolism as a benchmark, we investigate the alternative modeling approaches through comparative simulations analyses. The good dynamic behavior and the powerful predictive capabilities obtained using the hybrid model composed of Michaelis-Menten and the approximate lin-log kinetics indicate that this is a possible suitable approach to model complex large-scale networks where the exact rate laws are unknown. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 71 条
[61]   In Vivo Dynamics of the Pentose Phosphate Pathway in Saccharomyces cerevisiae [J].
Vaseghi, Sam ;
Baumeister, Anja ;
Rizzi, Manfred ;
Reuss, Matthias .
METABOLIC ENGINEERING, 1999, 1 (02) :128-140
[62]   Parameter optimization in S-system models [J].
Vilela, Marco ;
Chou, I-Chun ;
Vinga, Susana ;
Vasconcelos, Ana Tereza R. ;
Voit, Eberhard O. ;
Almeida, Jonas S. .
BMC SYSTEMS BIOLOGY, 2008, 2
[63]   Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics [J].
Visser, D ;
Heijnen, JJ .
METABOLIC ENGINEERING, 2003, 5 (03) :164-176
[64]   Rapid sampling for analysis of in vivo kinetics using the BioScope: A system for continuous-pulse experiments [J].
Visser, D ;
van Zuylen, GA ;
van Dam, JC ;
Oudshoorn, A ;
Eman, MR ;
Ras, C ;
van Gulik, WM ;
Frank, J ;
van Dedem, GWK ;
Heijnen, JJ .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (06) :674-681
[65]   The Mathematics of Metabolic Control Analysis revisited [J].
Visser, D ;
Heijnen, JJ .
METABOLIC ENGINEERING, 2002, 4 (02) :114-123
[66]   The intricate side of systems biology [J].
Voit, E ;
Neves, AR ;
Santos, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (25) :9452-9457
[67]   Unravelling the regulatory structure of biochemical networks using stimulus response experiments and large-scale model selection [J].
Wahl, S. A. ;
Haunschild, M. D. ;
Oldiges, M. ;
Wiechert, W. .
IEE PROCEEDINGS SYSTEMS BIOLOGY, 2006, 153 (04) :275-285
[68]   Kinetic modeling using S-systems and lin-log approaches [J].
Wang, Feng-Sheng ;
Ko, Chih-Lung ;
Voit, Eberhard O. .
BIOCHEMICAL ENGINEERING JOURNAL, 2007, 33 (03) :238-247
[69]  
WRIGHT BE, 1992, J BIOL CHEM, V267, P3101
[70]   Hybrid dynamic/static method for large-scale simulation of metabolism [J].
Yugi, Katsuyuki ;
Nakayama, Yoichi ;
Kinoshita, Ayako ;
Tomita, Masaru .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2005, 2