The relationship between thermal stability and pH optimum studied with wild-type and mutant Trichoderma reesei cellobiohydrolase Cel7A

被引:52
作者
Boer, H [1 ]
Koivula, A [1 ]
机构
[1] VTT Biotechnol, Espoo, Finland
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2003年 / 270卷 / 05期
关键词
cellulase; circular dichroism; fluorescence; pH optimum; thermostability;
D O I
10.1046/j.1432-1033.2003.03431.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The major cellulase secreted by the filamentous fungus Trichoderma reesei is cellobiohydrolase Cel7A. Its three-dimensional structure has been solved and various mutant enzymes produced. In order to study the potential use of T. reesei Cel7A in the alkaline pH range, the thermal stability of Cel7A was studied as a function of pH with the wild-type and two mutant enzymes using different spectroscopic methods. Tryptophan fluorescence and CD measurements of the wild-type enzyme show an optimal thermostability between pH 3.5-5.6 (T (m) , 62 +/- 2 degreesC), at which the highest enzymatic activity is also observed, and a gradual decrease in the stability at more alkaline pH values. A soluble substrate, cellotetraose, was shown to stabilize the protein fold both at optimal and alkaline pH. In addition, unfolding of the Cel7A enzyme and the release of the substrate seem to coincide at both acidic and alkaline pH, demonstrated by a change in the fluorescence emission maximum. CD measurements were used to show that the five point mutations (E223S/A224H/L225V/T226A/D262G) that together result in a more alkaline pH optimum [Becker, D., Braet, C., Brumer, H., III, Claeyssens, M., Divne, C., Fagerstrom, R.B., Harris, M., Jones, T.A., Kleywegt, G.J., Koivula, A., et al. (2001) Biochem. J. 356 , 19-30], destabilize the protein fold both at acidic and alkaline pH when compared with the wild-type enzyme. In addition, an interesting time-dependent fluorescence change, which was not observed by CD, was detected for the pH mutant. Our data show that in order to engineer more alkaline pH cellulases, a combination of mutations should be found, which both shift the pH optimum and at the same time improve the thermal stability at alkaline pH range.
引用
收藏
页码:841 / 848
页数:8
相关论文
共 24 条
[1]  
ALDER AJ, 1973, METHOD ENZYMOL, V27, P675
[2]   A bifunctionalized fluorogenic tetrasaccharide as a substrate to study cellulases [J].
Armand, S ;
Drouillard, S ;
Schulein, M ;
Henrissat, B ;
Driguez, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (05) :2709-2713
[3]   Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum:: the pH behaviour of Trichoderma reesei CeI7A and its E223S/A224H/L225V/T226A/D262G mutant [J].
Becker, D ;
Braet, C ;
Brumer, H ;
Claeyssens, M ;
Divne, C ;
Fagerström, BR ;
Harris, M ;
Jones, TA ;
Kleywegt, GJ ;
Koivula, A ;
Mahdi, S ;
Piens, K ;
Sinnott, ML ;
Ståhlberg, J ;
Teeri, TT ;
Underwood, M ;
Wohlfahrt, G .
BIOCHEMICAL JOURNAL, 2001, 356 (01) :19-30
[4]  
Boer H, 2000, BIOTECHNOL BIOENG, V69, P486, DOI 10.1002/1097-0290(20000905)69:5<486::AID-BIT3>3.0.CO
[5]  
2-N
[6]   Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A [J].
Boisset, C ;
Fraschini, C ;
Schülein, M ;
Henrissat, B ;
Chanzy, H .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (04) :1444-1452
[7]   STRUCTURES AND MECHANISMS OF GLYCOSYL HYDROLASES [J].
DAVIES, G ;
HENRISSAT, B .
STRUCTURE, 1995, 3 (09) :853-859
[8]   High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei [J].
Divne, C ;
Ståhlberg, J ;
Teeri, TT ;
Jones, TA .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 275 (02) :309-325
[9]   THE 3-DIMENSIONAL CRYSTAL-STRUCTURE OF THE CATALYTIC CORE OF CELLOBIOHYDROLASE-I FROM TRICHODERMA-REESEI [J].
DIVNE, C ;
STAHLBERG, J ;
REINIKAINEN, T ;
RUOHONEN, L ;
PETTERSSON, G ;
KNOWLES, JKC ;
TEERI, TT ;
JONES, TA .
SCIENCE, 1994, 265 (5171) :524-528
[10]  
Eftink MR, 1995, METHOD ENZYMOL, V259, P487