Process of protein transport by the type III secretion system

被引:318
作者
Ghosh, P [1 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
关键词
D O I
10.1128/MMBR.68.4.771-795.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The type HI secretion system (TTSS) of gram-negative bacteria is responsible for delivering bacterial proteins, termed effectors, from the bacterial cytosol directly into the interior of host cells. The TTSS is expressed predominantly by pathogenic bacteria and is usually used to introduce deleterious effectors into host cells. While biochemical activities of effectors vary widely, the TTSS apparatus used to deliver these effectors is conserved and shows functional complementarity for secretion and translocation. This review focuses on proteins that constitute the TTSS apparatus and on mechanisms that guide effectors to the TTSS apparatus for transport. The TTSS apparatus includes predicted integral inner membrane proteins that are conserved widely across TTSSs and in the basal body of the bacterial flagellum. It also includes proteins that are specific to the TTSS and contribute to ring-like structures in the inner membrane and includes secretin family members that form ring-like structures in the outer membrane. Most prominently situated on these coaxial, membrane-embedded rings is a needle-like or pilus-like structure that is implicated as a conduit for effector translocation into host cells. A short region of mRNA sequence or protein sequence in effectors acts as a signal sequence, directing proteins for transport through the TTSS. Additionally, a number of effectors require the action of specific TTSS chaperones for efficient and physiologically meaningful translocation into host cells. Numerous models explaining how effectors are transported into host cells have been proposed, but understanding of this process is incomplete and this topic remains an active area of inquiry.
引用
收藏
页码:771 / +
页数:26
相关论文
共 257 条
[1]   Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion [J].
Abe, A ;
de Grado, M ;
Pfuetzner, RA ;
Sánchez-SanMartín, C ;
DeVinney, R ;
Puente, JL ;
Strynadka, NCJ ;
Finlay, BB .
MOLECULAR MICROBIOLOGY, 1999, 33 (06) :1162-1175
[2]   Bacterial flagella and type III secretion systems [J].
Aizawa, S .
FEMS MICROBIOLOGY LETTERS, 2001, 202 (02) :157-164
[3]   High-resolution structure of an engineered cro monomer shows changes in conformation relative to the native dimer [J].
Albright, RA ;
Mossing, MC ;
Matthews, BW .
BIOCHEMISTRY, 1996, 35 (03) :735-742
[4]   YSCU, A YERSINIA-ENTEROCOLITICA INNER MEMBRANE-PROTEIN INVOLVED IN YOP SECRETION [J].
ALLAOUI, A ;
WOESTYN, S ;
SLUITERS, C ;
CORNELIS, GR .
JOURNAL OF BACTERIOLOGY, 1994, 176 (15) :4534-4542
[5]   Yersinia enterocolitica type III secretion:: an mRNA signal that couples translation and secretion of YopQ [J].
Anderson, DM ;
Schneewind, O .
MOLECULAR MICROBIOLOGY, 1999, 31 (04) :1139-1148
[6]   A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica [J].
Anderson, DM ;
Schneewind, O .
SCIENCE, 1997, 278 (5340) :1140-1143
[7]   Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals [J].
Anderson, DM ;
Fouts, DE ;
Collmer, A ;
Schneewind, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12839-12843
[8]   YopD and LcrH regulate expression of Yersinia enterocolitica YopQ by a posttranscriptional mechanism and bind to yopQ RNA [J].
Anderson, DM ;
Ramamurthi, KS ;
Tam, C ;
Schneewind, O .
JOURNAL OF BACTERIOLOGY, 2002, 184 (05) :1287-1295
[9]   Type III machines of Gram-negative pathogens: injecting virulence factors into host cells and more [J].
Anderson, DM ;
Schneewind, O .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (01) :18-24
[10]   STRUCTURE OF THE CRO REPRESSOR FROM BACTERIOPHAGE-LAMBDA AND ITS INTERACTION WITH DNA [J].
ANDERSON, WF ;
OHLENDORF, DH ;
TAKEDA, Y ;
MATTHEWS, BW .
NATURE, 1981, 290 (5809) :754-758