The Asymptotic Properties of the Solution to the Stokes Problem in Domains That Are Layer-Like at Infinity

被引:22
作者
Nazarov, S. A. [1 ]
Pileckas, K. [2 ]
机构
[1] Inst Mech Engn Problems, Lab Math Modelling Wave Phenomena, VO Bolshoy Pr 61, St Petersburg 199178, Russia
[2] Inst Math & Informat, LT-2600 Vilnius, Lithuania
关键词
Stokes equations; asymptotics at infinity; layer-like domains; dimension reduction procedure;
D O I
10.1007/s000210050007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Asymptotic formulae are derived for solutions to the Stokes problem in domains which, outside a ball, coincide with the three-dimensional layer R-2 x (0, 1). The properties of detached asymptotic terms differ in the transversal and longitudinal directions. In order to justify the asymptotic expansions the procedure of dimension reduction is employed together with estimates for miscellaneous weighted norms of the solutions.
引用
收藏
页码:131 / 167
页数:37
相关论文
共 18 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[3]  
[Anonymous], 1994, IZV ROSS AKAD NAUK M
[4]  
[Anonymous], ELLIPTIC BOUNDARY VA
[5]  
Kondratiev V., 1967, T MOSKOV MATEM OBSHC, V16, P209
[6]  
Ladyzhenskaya O. A., 1976, Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 9. Zap. Naun. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), V59, P81
[7]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS
[8]   COEFFICIENTS IN ASYMPTOTICS OF SOLUTIONS TO ELLIPTIC BOUNDARY VALUES PROBLEMS IN DOMAINS WITH CONIC POINTS [J].
MAZYA, VG ;
PLAMENEVSKII, BA .
MATHEMATISCHE NACHRICHTEN, 1977, 76 :29-60
[9]   On the Solvability of the Stokes and Navier-Stokes Problems in the Domains That Are Layer-Like at Infinity [J].
Nazarov, S. A. ;
Pileckas, K. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 1999, 1 (01) :78-116
[10]  
Nazarov S. A., 1996, ALGEBR ANAL, V8, P57