An autonomous organic reaction search engine for chemical reactivity

被引:61
作者
Dragone, Vincenza [1 ]
Sans, Victor [1 ]
Henson, Alon B. [1 ]
Granda, Jaroslaw M. [1 ]
Cronin, Leroy [1 ]
机构
[1] Univ Glasgow, WestCHEM, Sch Chem, Glasgow G12 8QQ, Lanark, Scotland
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
SELF-OPTIMIZATION; NMR-SPECTROSCOPY; FLOW SYNTHESIS; INTEGRATION; SYSTEMS;
D O I
10.1038/ncomms15733
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Continuous Processing and Efficient in Situ Reaction Monitoring of a Hypervalent Iodine(III) Mediated Cyclopropanation Using Benchtop NMR Spectroscopy [J].
Ahmed-Omer, Batool ;
Sliwinski, Eric ;
Cerroti, John P. ;
Ley, Steven V. .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2016, 20 (09) :1603-1614
[2]   Automated Serendipity with Self-Optimizing Continuous-Flow Reactors [J].
Amara, Zacharias ;
Streng, Emilia S. ;
Skilton, Ryan A. ;
Jin, Jing ;
George, Michael W. ;
Poliakoff, Martyn .
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2015, 2015 (28) :6141-6145
[3]  
Battilocchio C, 2016, NAT CHEM, V8, P360, DOI [10.1038/NCHEM.2439, 10.1038/nchem.2439]
[4]   The integration of flow reactors into synthetic organic chemistry [J].
Baxendale, Ian R. .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2013, 88 (04) :519-552
[5]   A Concise Flow Synthesis of Efavirenz [J].
Correia, Camille A. ;
Gilmore, Kerry ;
McQuade, D. Tyler ;
Seeberger, Peter H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (16) :4945-4948
[6]   Continuous Flow Synthesis of Thieno[2,3-disoquinolin-5(4H)-one Scaffold: A Valuable Source of PARP-1 Inhibitors [J].
Filipponi, Paolo ;
Ostacolo, Carmine ;
Novellino, Ettore ;
Pellicciari, Roberto ;
Gioiello, Antimo .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2014, 18 (11) :1345-1353
[7]   Chemical Assembly Systems: Layered Control for Divergent, Continuous, Multistep Syntheses of Active Pharmaceutical Ingredients [J].
Ghislieri, Diego ;
Gilmore, Kerry ;
Seeberger, Peter H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (02) :678-682
[8]  
Grzybowski BA, 2009, NAT CHEM, V1, P31, DOI [10.1038/NCHEM.136, 10.1038/nchem.136]
[9]   Continuous-Flow TechnologyA Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients [J].
Gutmann, Bernhard ;
Cantillo, David ;
Kappe, C. Oliver .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (23) :6688-6728
[10]   Self-optimisation of the final stage in the synthesis of EGFR kinase inhibitor AZD9291 using an automated flow reactor [J].
Holmes, Nicholas ;
Akien, Geoffrey R. ;
Blacker, A. John ;
Woodward, Robert L. ;
Meadows, Rebecca E. ;
Bourne, Richard A. .
REACTION CHEMISTRY & ENGINEERING, 2016, 1 (04) :366-371