Numerical renormalization group for quantum impurities in a bosonic bath

被引:146
作者
Bulla, R [1 ]
Lee, HJ
Tong, NH
Vojta, M
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[2] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
关键词
D O I
10.1103/PhysRevB.71.045122
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a detailed description of the recently proposed numerical renormalization group method for models of quantum impurities coupled to a bosonic bath. Specifically, the method is applied to the spin-boson model, both in the Ohmic and sub-Ohmic cases. We present various results for static as well as dynamic quantities and discuss details of the numerical implementation, e.g., the discretization of a bosonic bath with arbitrary continuous spectral density, the suitable choice of a finite basis in the bosonic Hilbert space, and questions of convergence with respect to truncation parameters. The method is shown to provide high-accuracy data over the whole range of model parameters and temperatures, which are in agreement with exact results and other numerical data from the literature.
引用
收藏
页数:21
相关论文
共 69 条
[1]   EXACT RESULTS IN KONDO PROBLEM .2. SCALING THEORY, QUALITATIVELY CORRECT SOLUTION, AND SOME NEW RESULTS ON ONE-DIMENSIONAL CLASSICAL STATISTICAL MODELS [J].
ANDERSON, PW ;
YUVAL, G ;
HAMANN, DR .
PHYSICAL REVIEW B-SOLID STATE, 1970, 1 (11) :4464-+
[2]   Spectral densities of response functions for the O(3) symmetric Anderson and two channel Kondo models [J].
Bradley, SC ;
Bulla, R ;
Hewson, AC ;
Zhang, GM .
EUROPEAN PHYSICAL JOURNAL B, 1999, 11 (04) :535-550
[3]   Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model [J].
Bulla, R ;
Tong, NH ;
Vojta, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (17)
[4]   The soft-gap Anderson model: comparison of renormalization group and local moment approaches [J].
Bulla, R ;
Glossop, MT ;
Logan, DE ;
Pruschke, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (23) :4899-4921
[5]   Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model [J].
Bulla, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (01) :136-139
[6]   Anderson impurity in pseudo-gap Fermi systems [J].
Bulla, R ;
Pruschke, T ;
Hewson, AC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (47) :10463-10474
[7]   Finite-temperature numerical renormalization group study of the Mott transition [J].
Bulla, R ;
Costi, TA ;
Vollhardt, D .
PHYSICAL REVIEW B, 2001, 64 (04)
[8]   Numerical renormalization group study of the O(3)-symmetric Anderson model [J].
Bulla, R ;
Hewson, AC .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 104 (02) :333-340
[9]  
Bulla R., 2000, ADV SOLID STATE PHYS, V40, P169, DOI 10.1007/BFb0108352
[10]   Quantum magnetic impurities in magnetically ordered systems -: art. no. 096401 [J].
Castro Neto, AH ;
Novais, E ;
Borda, L ;
Zaránd, G ;
Affleck, I .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)