Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes

被引:172
作者
Bhandakkar, Tanmay K. [1 ]
Gao, Huajian [1 ]
机构
[1] Brown Univ, Div Engn, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Intercalation-deintercalation; Diffusion induced stress; Lithium electrodes; Fracture; Flaw tolerance; Cohesive zone; LITHIUM INSERTION; ALLOY ANODES; ION; FRACTURE; NANOCOMPOSITES; GERMANIUM; CAPACITY; PARTICLE; SILICON;
D O I
10.1016/j.ijsolstr.2010.02.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Recent advances in lithium-ion battery electrodes with huge volume changes during intercalation-deintercalation cycles are calling for studies on crack nucleation under diffusion induced stresses. Here we develop a cohesive model of crack nucleation in an initially crack-free strip electrode under galvanostatic intercalation and deintercalation processes. The analysis identifies a critical characteristic dimension below which crack nucleation becomes impossible. The critical size and other predictions of the model are compared to recent experiments on silicon nanowire electrodes. The results suggest nanostructured electrodes are highly promising for applications in high capacity batteries. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1424 / 1434
页数:11
相关论文
共 47 条
  • [31] Li J.C.M., 1978, MATALL T, V9, P1353, DOI DOI 10.1007/BF02661808
  • [32] Active/inactive nanocomposites as anodes for Li-ion batteries
    Mao, O
    Turner, RL
    Courtney, IA
    Fredericksen, BD
    Buckett, MI
    Krause, LJ
    Dahn, JR
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (01) : 3 - 5
  • [33] Cohesive zone modeling of crack nucleation at bimaterial corners
    Mohammed, I
    Liechti, KM
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (04) : 735 - 764
  • [34] Nazarov AV, 2004, PHYS SCRIPTA, VT108, P90
  • [35] A CONTINUUM MODEL FOR VOID NUCLEATION BY INCLUSION DEBONDING
    NEEDLEMAN, A
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1987, 54 (03): : 525 - 531
  • [36] Press W. H., 2002, NUMERICAL RECIPES C
  • [37] Prussin S., 1961, J APPL PHYS, V32, P1876, DOI DOI 10.1063/1.1728256
  • [38] High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
    Taberna, L.
    Mitra, S.
    Poizot, P.
    Simon, P.
    Tarascon, J. -M.
    [J]. NATURE MATERIALS, 2006, 5 (07) : 567 - 573
  • [39] Issues and challenges facing rechargeable lithium batteries
    Tarascon, JM
    Armand, M
    [J]. NATURE, 2001, 414 (6861) : 359 - 367
  • [40] Lithium batteries - A spectacularly reactive cathode
    Thomas, J
    [J]. NATURE MATERIALS, 2003, 2 (11) : 705 - 706