Scoring function for automated assessment of protein structure template quality

被引:1172
作者
Zhang, Y [1 ]
Skolnick, J [1 ]
机构
[1] Univ Buffalo, Ctr Excellence Bioinformat, Buffalo, NY 14203 USA
关键词
D O I
10.1002/prot.20264
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have developed a new scoring function, the template modeling score (TM-score), to assess the quality of protein structure templates and predicted full-length models by extending the approaches used in Global Distance Test (GDT)(1) and MaxSub.(2) First, a protein size-dependent scale is exploited to eliminate the inherent protein size dependence of the previous scores and appropriately account for random protein structure pairs. Second, rather than setting specific distance cutoffs and calculating only the fractions with errors below the cutoff, all residue pairs in alignment/modeling are evaluated in the proposed score. For comparison of various scoring functions, we have constructed a large-scale benchmark set of structure templates for 1489 small to medium size proteins using the threading program PROSPECTOR_3 and built the full-length models using MODELLER and TASSER. The TM-score of the initial threading alignments, compared to the GDT and MaxSub scoring functions, shows a much stronger correlation to the quality of the final full-length models. The TM-score is further exploited as an assessment of all 'new fold' targets in the recent CASP5 experiment and shows a close coincidence with the results of human-expert visual assessment. These data suggest that the TM-score is a useful complement to the fully automated assessment of protein structure predictions. The executable program of TM-score is freely downloadable at http://bioinformatics.buffalo.edu/TM-score. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:702 / 710
页数:9
相关论文
共 38 条
[1]   Predictions without templates: New folds, secondary structure, and contacts in CASP5 [J].
Aloy, P ;
Stark, A ;
Hadley, S ;
Russell, RB .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 53 :436-456
[2]   Homology modelling by distance geometry [J].
Aszodi, A ;
Taylor, WR .
FOLDING & DESIGN, 1996, 1 (05) :325-334
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]  
Betancourt MR, 2001, BIOPOLYMERS, V59, P305, DOI 10.1002/1097-0282(20011015)59:5<305::AID-BIP1027>3.3.CO
[5]  
2-Y
[6]   A METHOD TO IDENTIFY PROTEIN SEQUENCES THAT FOLD INTO A KNOWN 3-DIMENSIONAL STRUCTURE [J].
BOWIE, JU ;
LUTHY, R ;
EISENBERG, D .
SCIENCE, 1991, 253 (5016) :164-170
[7]  
BROCKLEHURST SM, 1993, PROTEIN SCI, V2, P626
[8]   STATISTICS OF SEQUENCE-STRUCTURE THREADING [J].
BRYANT, SH ;
ALTSCHUL, SF .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1995, 5 (02) :236-244
[9]   A normalized root-mean-square distance for comparing protein three-dimensional structures [J].
Carugo, O ;
Pongor, S .
PROTEIN SCIENCE, 2001, 10 (07) :1470-1473
[10]   A study of quality measures for protein threading models [J].
Cristobal, Susana ;
Zemla, Adam ;
Fischer, Daniel ;
Rychlewski, Leszek ;
Elofsson, Arne .
BMC BIOINFORMATICS, 2001, 2 (1)