Translokin is an intracellular mediator of FGF-2 trafficking

被引:62
作者
Bossard, C [1 ]
Laurell, H [1 ]
Van den Berghe, L [1 ]
Meunier, S [1 ]
Zanibellato, C [1 ]
Prats, H [1 ]
机构
[1] CHU Rangueil, INSERM, U589, IFR 31,Inst Louis Bugnard, F-31403 Toulouse 04, France
关键词
D O I
10.1038/ncb979
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Basic fibroblast growth factor (bFGF or FGF-2) exerts its pleiotropic activities both as an exogenous and an intracellular factor. FGF-1 and FGF-2 are prototypes for this dual signalling, but the mechanisms of their intracellular actions remain unknown. Here we show that Translokin, a cytoplasmic protein of relative molecular mass 55,000 (M-r 55K), interacts specifically with the 18K form of FGF-2. Translokin is ubiquitously expressed and colocalizes with the microtubular network. As Translokin does not interact with FGF-1, we used a strategy based on FGF-1-FGF-2 chimaeras to map the interacting regions in FGF-2 and to generate Nb1a2, a non-interacting variant of FGF-2. Although most of the FGF-2 properties are preserved in Nb1a2, this variant is defective in intracellular translocation and in stimulating proliferation. The fusion of a nuclear localization signal to Nb1a2 restores its mitogenic activity and its nuclear association. Inhibiting Translokin expression by RNA interference reduces the translocation of FGF-2 without affecting the intracellular trafficking of FGF-1. Our data show that the nuclear association of internalized FGF-2 is essential for its mitogenic activity and that Translokin is important in this translocation pathway.
引用
收藏
页码:433 / 439
页数:7
相关论文
共 33 条
[1]  
Arnaud E, 1999, MOL CELL BIOL, V19, P505
[2]   Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor [J].
Bailly, K ;
Soulet, F ;
Leroy, D ;
Amalric, F ;
Bouche, G .
FASEB JOURNAL, 2000, 14 (02) :333-344
[3]   TRANSLOCATION OF BFGF TO THE NUCLEUS IS G1 PHASE CELL-CYCLE SPECIFIC IN BOVINE AORTIC ENDOTHELIAL-CELLS [J].
BALDIN, V ;
ROMAN, AM ;
BOSCBIERNE, I ;
AMALRIC, F ;
BOUCHE, G .
EMBO JOURNAL, 1990, 9 (05) :1511-1517
[4]   Biological roles of fibroblast growth factor-2 [J].
Bikfalvi, A ;
Klein, S ;
Pintucci, G ;
Rifkin, DB .
ENDOCRINE REVIEWS, 1997, 18 (01) :26-45
[5]   Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin [J].
Bonnet, H ;
Filhol, O ;
Truchet, I ;
Brethenou, P ;
Cochet, C ;
Amalric, F ;
Bouche, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (40) :24781-24787
[6]   BASIC FIBROBLAST GROWTH-FACTOR ENTERS THE NUCLEOLUS AND STIMULATES THE TRANSCRIPTION OF RIBOSOMAL GENES IN ABAE CELLS UNDERGOING G0-]G1 TRANSITION [J].
BOUCHE, G ;
GAS, N ;
PRATS, H ;
BALDIN, V ;
TAUBER, JP ;
TEISSIE, J ;
AMALRIC, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (19) :6770-6774
[7]   ALTERNATIVE INITIATION OF TRANSLATION DETERMINES CYTOPLASMIC OR NUCLEAR-LOCALIZATION OF BASIC FIBROBLAST GROWTH-FACTOR [J].
BUGLER, B ;
AMALRIC, F ;
PRATS, H .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (01) :573-577
[8]   Coordination of fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor-2 (FGF-2) trafficking to nuclei of reactive astrocytes around cerebral lesions in adult rats [J].
Clarke, WE ;
Berry, M ;
Smith, C ;
Kent, A ;
Logan, A .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2001, 17 (01) :17-30
[9]   FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition [J].
Cross, MJ ;
Claesson-Welsh, L .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2001, 22 (04) :201-207
[10]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498