Distribution of eigenvalues in non-Hermitian Anderson models

被引:159
作者
Goldsheid, IY [1 ]
Khoruzhenko, BA
机构
[1] Isaac Newton Inst Math Sci, Cambridge CB3 0EH, England
[2] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
关键词
D O I
10.1103/PhysRevLett.80.2897
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a theory which describes the behavior of eigenvalues of a class of one-dimensional random non-Hermitian operators introduced recently by Hatano and Nelson. We prove that the eigenvalues are distributed along a curve in the complex plane. An equation for the curve is derived, and the density of complex eigenvalues is found in terms of spectral characteristics of a "reference" Hermitian disordered system. The generic properties of the eigenvalue distribution are discussed.
引用
收藏
页码:2897 / 2900
页数:4
相关论文
共 24 条
[1]  
BROWER PW, CONDMAT9705186
[2]  
CHALKER JT, CONDMAT970198
[3]   Directed quantum chaos [J].
Efetov, KB .
PHYSICAL REVIEW LETTERS, 1997, 79 (03) :491-494
[4]  
FEINBERG J, CONDMAT9703087
[5]  
FEINBERG J, CONDMAT9706218
[6]   Statistics of S-matrix poles in few-channel chaotic scattering: Crossover from isolated to overlapping resonances [J].
Fyodorov, YV ;
Sommers, HJ .
JETP LETTERS, 1996, 63 (12) :1026-1030
[7]   Almost Hermitian random matrices: Crossover from Wigner-Dyson to Ginibre eigenvalue statistics [J].
Fyodorov, YV ;
Khoruzhenko, BA ;
Sommers, HJ .
PHYSICAL REVIEW LETTERS, 1997, 79 (04) :557-560
[8]   Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance [J].
Fyodorov, YV ;
Sommers, HJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (04) :1918-1981
[9]   CIRCULAR LAW [J].
GIRKO, VL .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1985, 29 (04) :694-706
[10]  
GOLDSHEID IY, 1975, DOKL AKAD NAUK SSSR+, V224, P1248