The convergence of the two-stage iterative method for Hermitian positive definite linear systems

被引:30
作者
Bai, ZZ
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
[2] Univ Oxford, Comp Lab, Oxford OX1 2JD, England
[3] Rutherford Appleton Lab, Atlas Ctr, Didcot, Oxon, England
基金
中国国家自然科学基金;
关键词
linear system of equations; two-stage iterative method; Hermitian positive definite matrix; convergence theory; asymptotic convergence rate;
D O I
10.1016/S0893-9659(98)00001-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper sets up the convergence theory of the two-stage iterative method for solving Hermitian positive definite systems of linear equations, and investigates the influences of the splitting matrices and the inner iteration number on the asymptotic convergence rate of this method.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 7 条
[1]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[2]   The monotone convergence of the two-stage iterative method for solving large sparse systems of linear equations [J].
Bai, ZZ ;
Wang, DR .
APPLIED MATHEMATICS LETTERS, 1997, 10 (01) :113-117
[3]   H-SPLITTINGS AND 2-STAGE ITERATIVE METHODS [J].
FROMMER, A ;
SZYLD, DB .
NUMERISCHE MATHEMATIK, 1992, 63 (03) :345-356
[4]   THE CONVERGENCE OF INEXACT TSCHEBYSCHEFF AND RICHARDSON ITERATIVE METHODS FOR SOLVING LINEAR-SYSTEMS [J].
GOLUB, GH ;
OVERTON, ML .
NUMERISCHE MATHEMATIK, 1988, 53 (05) :571-593
[5]  
LANZKRON PJ, 1991, NUMER MATH, V58, P685
[6]   CONVERGENCE OF 2-STAGE ITERATIVE PROCESSES FOR SOLVING LINEAR EQUATIONS [J].
NICHOLS, NK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (03) :460-469
[7]  
Wachspress E. L., 1966, ITERATIVE SOLUTION E