Hec1 and Nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites

被引:210
作者
DeLuca, JG
Dong, YM
Hergert, P
Strauss, J
Hickey, JM
Salmon, ED
McEwen, BF
机构
[1] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
[2] New York State Dept Hlth, Div Mol Med, Wadsworth Ctr, Albany, NY 12201 USA
关键词
D O I
10.1091/mbc.E04-09-0852
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A major goal in the study of vertebrate mitosis is to identify proteins that create the kinetochore-microtubule attachment site. Attachment sites within the kinetochore outer plate generate microtubule dependent forces for chromosome movement and regulate spindle checkpoint protein assembly at the kinetochore. The Ndc80 complex, comprised of Ndc80 (Hec1), Nuf2, Spc24, and Spc25, is essential for metaphase chromosome alignment and anaphase chromosome segregation. It has also been suggested to have roles in kinetochore microtubule formation, production of kinetochore tension, and the spindle checkpoint. Here we show that Nuf2 and Hec1 localize throughout the outer plate, and not the corona, of the vertebrate kinetochore. They are part of a stable "core" region whose assembly dynamics are distinct from other outer domain spindle checkpoint and motor proteins. Furthermore, Nuf2 and Hec1 are required for formation and/or maintenance of the outer plate structure itself. Fluorescence light microscopy, live cell imaging, and electron microscopy provide quantitative data demonstrating that Nuf2 and Hec1 are essential for normal kinetochore microtubule attachment. Our results indicate that Nuf2 and Hec1 are required for organization of stable microtubule plus-end binding sites in the outer plate that are needed for the sustained poleward forces required for biorientation at kinetochores.
引用
收藏
页码:519 / 531
页数:13
相关论文
共 44 条
[1]   Identification of two novel components of the human NDC80 kinetochore complex [J].
Bharadwaj, R ;
Qi, W ;
Yu, HT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) :13076-13085
[2]   COLD-LABILE AND COLD-STABLE MICROTUBULES IN MITOTIC SPINDLE OF MAMMALIAN-CELLS [J].
BRINKLEY, BR ;
CARTWRIGHT, J .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1975, 253 (JUN30) :428-439
[3]   A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension [J].
Cheeseman, IM ;
Niessen, S ;
Anderson, S ;
Hyndman, F ;
Yates, JR ;
Oegema, K ;
Desai, A .
GENES & DEVELOPMENT, 2004, 18 (18) :2255-2268
[4]   HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis [J].
Chen, YM ;
Riley, DJ ;
Chen, PL ;
Lee, WH .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (10) :6049-6056
[5]   Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling [J].
Cleveland, DW ;
Mao, YH ;
Sullivan, KF .
CELL, 2003, 112 (04) :407-421
[6]   Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase [J].
Cooke, CA ;
Schaar, B ;
Yen, TJ ;
Earnshaw, WC .
CHROMOSOMA, 1997, 106 (07) :446-455
[7]   hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells [J].
DeLuca, JG ;
Moree, B ;
Hickey, JM ;
Kilmartin, JV ;
Salmon, ED .
JOURNAL OF CELL BIOLOGY, 2002, 159 (04) :549-555
[8]   Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores [J].
DeLuca, JG ;
Howell, BJ ;
Canman, JC ;
Hickey, JM ;
Fang, GW ;
Salmon, ED .
CURRENT BIOLOGY, 2003, 13 (23) :2103-2109
[9]   KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans [J].
Desai, A ;
Rybina, S ;
Müller-Reichert, T ;
Shevchenko, A ;
Shevchenko, A ;
Hyman, A ;
Oegema, K .
GENES & DEVELOPMENT, 2003, 17 (19) :2421-2435
[10]   Molecular analysis of kinetochore-microtubule attachment in budding yeast [J].
He, XW ;
Rines, DR ;
Espelin, CW ;
Sorger, PK .
CELL, 2001, 106 (02) :195-206