Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins

被引:162
作者
Saibo, NJM [1 ]
Vriezen, WH [1 ]
Beemster, GTS [1 ]
Van Der Straeten, D [1 ]
机构
[1] State Univ Ghent VIB, Dept Plant Syst Biol, B-9000 Ghent, Belgium
关键词
hormones; Arabidopsis; hypocotyl; stomata; cell division; endoreduplication;
D O I
10.1046/j.1365-313X.2003.01684.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The plant hormones gibberellin (GA), ethylene and auxin can promote hypocotyl elongation of Arabidopsis seedlings grown in the light on a low nutrient medium (LNM). In this study, we used hypocotyl elongation as a system to investigate interactions between GA and ethylene or auxin and analysed their influence on the development of stomata in the hypocotyl. When applied together, GA and ethylene or auxin exerted a synergistic effect on hypocotyl elongation. Stimulated cell elongation is the main cause of hypocotyl elongation. Furthermore, hypocotyls treated with GA plus either ethylene or auxin show an increased endoreduplication. In addition, a small but significant increase in cell number was observed in the cortical cell files of hypocotyls treated with ethylene and GA together. However, studies with transgenic seedlings expressing CycB1::uidA genes revealed that cell division in the hypocotyl occurs only in the epidermis and mainly to form stomata, a process strictly regulated by hormones. Stomata formation in the hypocotyl is induced by the treatment with either GA or ethylene. The effect of GA could be strongly enhanced by the simultaneous addition of ethylene or auxin to the growth medium. Gibberellin is the main signal inducing stomata formation in the hypocotyl. In addition, this signal regulates hypocotyl elongation and is modulated by ethylene and auxin. The implication of these three hormones in relation to cell division and stomata formation is discussed.
引用
收藏
页码:989 / 1000
页数:12
相关论文
共 43 条
[1]   ASC4, A PRIMARY INDOLEACETIC ACID-RESPONSIVE GENE ENCODING 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE IN ARABIDOPSIS-THALIANA - STRUCTURAL CHARACTERIZATION, EXPRESSION IN ESCHERICHIA-COLI, AND EXPRESSION CHARACTERISTICS IN RESPONSE TO AUXIN [J].
ABEL, S ;
NGUYEN, MD ;
CHOW, W ;
THEOLOGIS, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (32) :19093-19099
[2]   Regulation of gibberellin 20-oxidase and gibberellin 3β-hydroxylase transcript accumulation during de-etiolation of pea seedlings [J].
Ait-Ali, T ;
Frances, S ;
Weller, JL ;
Reid, JB ;
Kendrick, RE ;
Kamiya, Y .
PLANT PHYSIOLOGY, 1999, 121 (03) :783-791
[3]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[4]  
Beeckman T., 1994, Plant Molecular Biology Reporter, V12, P37, DOI 10.1007/BF02668662
[5]   Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning [J].
Berger, F ;
Linstead, P ;
Dolan, L ;
Haseloff, J .
DEVELOPMENTAL BIOLOGY, 1998, 194 (02) :226-234
[6]   INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA [J].
BLEECKER, AB ;
ESTELLE, MA ;
SOMERVILLE, C ;
KENDE, H .
SCIENCE, 1988, 241 (4869) :1086-1089
[7]   Ethylene hormone receptor action in Arabidopsis [J].
Chang, C ;
Stadler, R .
BIOESSAYS, 2001, 23 (07) :619-627
[8]   Hormonal interactions in the control of Arabidopsis hypocotyl elongation [J].
Collett, CE ;
Harberd, NP ;
Leyser, O .
PLANT PHYSIOLOGY, 2000, 124 (02) :553-561
[9]   Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation [J].
Cowling, RJ ;
Harberd, NP .
JOURNAL OF EXPERIMENTAL BOTANY, 1999, 50 (337) :1351-1357
[10]   Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor [J].
De Veylder, L ;
Beeckman, T ;
Beemster, GTS ;
Engler, JD ;
Ormenese, S ;
Maes, S ;
Naudts, M ;
Van der Schueren, E ;
Jacqmard, A ;
Engler, G ;
Inzé, D .
EMBO JOURNAL, 2002, 21 (06) :1360-1368