Identifying Tightly Regulated and Variably Expressed Networks by Differential Rank Conservation (DIRAC)

被引:61
作者
Eddy, James A. [1 ,2 ]
Hood, Leroy [3 ]
Price, Nathan D. [1 ,4 ,5 ]
Geman, Donald [6 ,7 ]
机构
[1] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[3] Inst Syst Biol, Seattle, WA USA
[4] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[6] Johns Hopkins Univ, Inst Computat Med, Baltimore, MD USA
[7] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
关键词
2-GENE CLASSIFIER; CELL METABOLISM; CANCER; PATHWAYS; CYCLE;
D O I
10.1371/journal.pcbi.1000792
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A powerful way to separate signal from noise in biology is to convert the molecular data from individual genes or proteins into an analysis of comparative biological network behaviors. One of the limitations of previous network analyses is that they do not take into account the combinatorial nature of gene interactions within the network. We report here a new technique, Differential Rank Conservation (DIRAC), which permits one to assess these combinatorial interactions to quantify various biological pathways or networks in a comparative sense, and to determine how they change in different individuals experiencing the same disease process. This approach is based on the relative expression values of participating genes-i.e., the ordering of expression within network profiles. DIRAC provides quantitative measures of how network rankings differ either among networks for a selected phenotype or among phenotypes for a selected network. We examined disease phenotypes including cancer subtypes and neurological disorders and identified networks that are tightly regulated, as defined by high conservation of transcript ordering. Interestingly, we observed a strong trend to looser network regulation in more malignant phenotypes and later stages of disease. At a sample level, DIRAC can detect a change in ranking between phenotypes for any selected network. Variably expressed networks represent statistically robust differences between disease states and serve as signatures for accurate molecular classification, validating the information about expression patterns captured by DIRAC. Importantly, DIRAC can be applied not only to transcriptomic data, but to any ordinal data type.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 39 条
[1]  
[Anonymous], 1998, PAPER PRESENTED 10 E
[2]  
[Anonymous], 2000, NATURE STAT LEARNING, DOI DOI 10.1007/978-1-4757-3264-1
[3]   MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [J].
Armstrong, SA ;
Staunton, JE ;
Silverman, LB ;
Pieters, R ;
de Boer, ML ;
Minden, MD ;
Sallan, SE ;
Lander, ES ;
Golub, TR ;
Korsmeyer, SJ .
NATURE GENETICS, 2002, 30 (01) :41-47
[4]   Protein subnetwork markers improve prediction of cancer outcome [J].
Auffray, Charles .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[5]   Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process [J].
Chandran, Uma R. ;
Ma, Changqing ;
Dhir, Rajiv ;
Bisceglia, Michelle ;
Lyons-Weiler, Maureen ;
Liang, Wenjing ;
Michalopoulos, George ;
Becich, Michael ;
Monzon, Federico A. .
BMC CANCER, 2007, 7 (1)
[6]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[7]   Network-based classification of breast cancer metastasis [J].
Chuang, Han-Yu ;
Lee, Eunjung ;
Liu, Yu-Tsueng ;
Lee, Doheon ;
Ideker, Trey .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[8]  
Geman Donald, 2004, Stat Appl Genet Mol Biol, V3, pArticle19
[9]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[10]   Systems biology and new technologies enable predictive and preventative medicine [J].
Hood, L ;
Heath, JR ;
Phelps, ME ;
Lin, BY .
SCIENCE, 2004, 306 (5696) :640-643