Photoluminescence microscopy of carbon nanotubes grown by chemical vapor deposition:: Influence of external dielectric screening on optical transition energies

被引:47
作者
Kiowski, Oliver
Lebedkin, Sergei [1 ]
Hennrich, Frank
Malik, Sharali
Roesner, Harald
Arnold, Katharina
Suergers, Christoph
Kappes, Manfred M.
机构
[1] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Univ Karlsruhe, Inst Phys Chem, D-76128 Karlsruhe, Germany
[3] Univ Karlsruhe, Inst Phys, D-76128 Karlsruhe, Germany
[4] Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany
来源
PHYSICAL REVIEW B | 2007年 / 75卷 / 07期
关键词
D O I
10.1103/PhysRevB.75.075421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photoluminescence (PL) laser microscopy was applied to determine optical transition energies E-11 and E-22 of individual semiconducting single-walled carbon nanotubes (SWNTs) suspended on top of carbon nanotube "forests," grown by chemical vapor deposition (CVD) on silicon substrates. A uniform increase of E-11 and E-22 energies by 40-55 and 24-48 meV, respectively, was found for 19 different (n,m) nanotube species suspended in air or a vacuum-relative to SWNTs in a reference water-surfactant dispersion. CVD-grown SWNTs embedded in paraffin oil and 1-methylnaphthalene show nearly the same PL peak positions as SWNTs in aqueous dispersion, indicating similar dielectric screening of excitons in SWNTs in these media.
引用
收藏
页数:7
相关论文
共 34 条
[11]  
HENNRICH F, IN PRESS J PHYS CH B
[12]   Hybrid devices from single wall carbon nanotubes epitaxially grown into a semiconductor heterostructure [J].
Jensen, A ;
Hauptmann, JR ;
Nygård, J ;
Sadowski, J ;
Lindelof, PE .
NANO LETTERS, 2004, 4 (02) :349-352
[13]   Ratio problem in single carbon nanotube fluorescence spectroscopy [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2003, 90 (20) :4
[14]  
Keldysh LV, 1997, PHYS STATUS SOLIDI A, V164, P3, DOI 10.1002/1521-396X(199711)164:1<3::AID-PSSA3>3.0.CO
[15]  
2-S
[16]   Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy [J].
Kindt, JT ;
Schmuttenmaer, CA .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (24) :10373-10379
[17]   FTIR-luminescence mapping of dispersed single-walled carbon nanotubes [J].
Lebedkin, S ;
Arnold, K ;
Hennrich, F ;
Krupke, R ;
Renker, B ;
Kappes, MM .
NEW JOURNAL OF PHYSICS, 2003, 5 :140.1-140.11
[18]   Photoluminescence from single-walled carbon nanotubes: a comparison between suspended and micelle-encapsulated nanotubes [J].
Lefebvre, J ;
Fraser, JM ;
Homma, Y ;
Finnie, P .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 78 (08) :1107-1110
[19]   Exciton binding energies in carbon nanotubes from two-photon photoluminescence [J].
Maultzsch, J ;
Pomraenke, R ;
Reich, S ;
Chang, E ;
Prezzi, D ;
Ruini, A ;
Molinari, E ;
Strano, MS ;
Thomsen, C ;
Lienau, C .
PHYSICAL REVIEW B, 2005, 72 (24)
[20]   Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes [J].
Miyauchi, Yuhei ;
Maruyama, Shigeo .
PHYSICAL REVIEW B, 2006, 74 (03)