Joint modelling of bivariate longitudinal data with informative dropout and left-censoring, with application to the evolution of CD4+cell count and HIV RNA viral load in response to treatment of HIV infection

被引:67
作者
Thiébaut, R
Jacqmin-Gadda, H
Babiker, A
Commenges, D
机构
[1] Univ Bordeaux 2, INSERM, ISPED, Case 11, F-33076 Bordeaux, France
[2] UCL, Sch Med, MRC, Clin Trials Unit, London NW1 2DA, England
基金
英国医学研究理事会;
关键词
bivariate mixed model; repeated measurements; left-censoring; informative dropout; HIV infection;
D O I
10.1002/sim.1923
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several methodological issues occur in the context of the longitudinal study of HIV markers evolution. Three of them are of particular importance: (i) correlation between CD4+ T lymphocytes (CD4+) and plasma HIV RNA; (ii) left-censoring of HIV RNA due to a lower quantification limit; (iii) and potential informative dropout. We propose a likelihood inference for a parametric joint model including a bivariate linear mixed model for the two markers and a lognormal survival model for the time to drop out. We apply the model to data from patients starting antiretroviral treatment in the CASCADE collaboration where all of the three issues needed to be addressed. Copyright 2004 John Wiley Sons, Ltd.
引用
收藏
页码:65 / 82
页数:18
相关论文
共 31 条
[1]  
Boscardin W J, 1998, Stat Methods Med Res, V7, P13
[2]  
CASCADE Collaboration, 2000, LANCET, V355, P1158, DOI 10.1016/S0140-6736(00)02069-9
[3]  
DEGRUTTOLA V, 1994, BIOMETRICS, V50, P1003, DOI 10.2307/2533439
[4]   Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy:: a collaborative analysis of prospective studies [J].
Egger, M ;
May, M ;
Chêne, G ;
Phillips, AN ;
Ledergerber, B ;
Dabis, F ;
Costagliola, D ;
Monforte, AD ;
de Wolf, F ;
Reiss, P ;
Lundgren, JD ;
Justice, AC ;
Staszewski, S ;
Leport, C ;
Hogg, RS ;
Sabin, CA ;
Gill, MJ ;
Salzberger, B ;
Sterne, JAC .
LANCET, 2002, 360 (9327) :119-129
[5]   Impact of new antiretroviral combination therapies in HIV infected patients in Switzerland: prospective multicentre study [J].
Egger, M ;
Hirschel, B ;
Francioli, P ;
Sudre, P ;
Wirz, M ;
Flepp, M ;
Rickenbach, M ;
Malinverni, R ;
Vernazza, P ;
Battegay, M ;
Bernasconi, E ;
Burgisser, P ;
Erb, P ;
Fierz, W ;
Grob, P ;
Gruninger, U ;
Jeannerod, L ;
Ledergerber, B ;
Luthy, R ;
Matter, L ;
Opravil, M ;
Paccaud, F ;
Perrin, L ;
Pichler, W ;
Piffaretti, GC ;
Rutschmann, O ;
Zanetti, G .
BMJ-BRITISH MEDICAL JOURNAL, 1997, 315 (7117) :1194-1199
[6]   Modelling HIV viral rebound using non-linear mixed effects models [J].
Fitzgerald, AP ;
DeGruttola, VG ;
Vaida, F .
STATISTICS IN MEDICINE, 2002, 21 (14) :2093-2108
[7]  
Henderson R, 2000, Biostatistics, V1, P465, DOI 10.1093/biostatistics/1.4.465
[8]  
Hogan JW, 1997, STAT MED, V16, P259
[9]   Patterns of plasma human immunodeficiency virus type 1 RNA response to antiretroviral therapy [J].
Huang, W ;
De Gruttola, V ;
Fischl, M ;
Hammer, S ;
Richman, D ;
Havlir, D ;
Gulick, R ;
Squires, K ;
Mellors, J .
JOURNAL OF INFECTIOUS DISEASES, 2001, 183 (10) :1455-1465
[10]   Mixed effects models with censored data with application to HIV RNA levels [J].
Hughes, JP .
BIOMETRICS, 1999, 55 (02) :625-629