Sequences in the intracellular loops of the yeast pheromone receptor Ste2p required for G protein activation

被引:25
作者
Celic, A
Martin, NP
Son, CD
Becker, JM
Naider, F
Dumont, ME
机构
[1] Univ Rochester, Sch Med & Dent, Dept Biochem & Biophys, Rochester, NY 14642 USA
[2] Univ Tennessee, Dept Biochem Mol & Cellular Biol, Knoxville, TN 37996 USA
[3] CUNY Coll Staten Isl, Dept Chem, Staten Isl, NY 10314 USA
关键词
D O I
10.1021/bi0269308
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The a-factor receptor of the yeast Saccharomyces cerevisiae encoded by the STE2 gene is a member of the large family of G protein-coupled receptors (GPCRs) that mediate multiple signal transduction pathways. The third intracellular loop of GPCRs has been identified as a likely site of interaction with G proteins. To determine the extent of allowed substitutions within this loop, we subjected a stretch of 21 amino acids (Leu228-Leu248) to intensive random mutagenesis and screened multiply substituted alleles for receptor function. The 91 partially functional mutant alleles that were recovered contained 96 unique amino acid substitutions. Every position in this region can be replaced with at least two other types of amino acids without a significant effect on function. The tolerance for nonconservative substitutions indicates that activation of the G protein by ligand-bound receptors involves multiple intramolecular interactions that do not strongly depend on particular sequence elements. Many of the functional mutant alleles exhibit greater than normal levels of signaling, consistent with an inhibitory role for the third intracellular loop. Removal of increasing numbers of positively charged residues from the loop by site-directed mutagenesis causes a progressive loss of signaling function, indicating that the overall net charge of the loop is important for receptor function. Introduction of negatively charged residues also leads to a reduced level of signaling. The defects in signaling caused by substitution of charged amino acids are not caused by changes in the abundance of receptors at the cell surface.
引用
收藏
页码:3004 / 3017
页数:14
相关论文
共 61 条
  • [31] KUNKEL TA, 1987, METHOD ENZYMOL, V154, P367
  • [32] The 2.0 angstrom crystal structure of a heterotrimeric G protein
    Lambright, DG
    Sondek, J
    Bohm, A
    Skiba, NP
    Hamm, HE
    Sigler, PB
    [J]. NATURE, 1996, 379 (6563) : 311 - 319
  • [33] Dominant negative mutations in the α-factor receptor, a G protein-coupled receptor encoded by the STE2 gene of the yeast Saccharomyces cerevisiae
    Leavitt, LM
    Macaluso, CR
    Kim, KS
    Martin, NP
    Dumont, ME
    [J]. MOLECULAR AND GENERAL GENETICS, 1999, 261 (06): : 917 - 932
  • [34] Lee BK, 2001, J BIOL CHEM, V276, P37950
  • [35] CONSTITUTIVE ACTIVITY OF RECEPTORS COUPLED TO GUANINE-NUCLEOTIDE REGULATORY PROTEINS
    LEFKOWITZ, RJ
    COTECCHIA, S
    SAMAMA, P
    COSTA, T
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 1993, 14 (08) : 303 - 307
  • [37] Assembly of g protein-coupled receptors from fragments: Identification of functional receptors with discontinuities in each of the loops connecting transmembrane segments
    Martin, NP
    Leavitt, LM
    Sommers, CM
    Dumont, ME
    [J]. BIOCHEMISTRY, 1999, 38 (02) : 682 - 695
  • [38] Mutagenic mapping of helical structures in the transmembrane segments of the yeast α-factor receptor
    Martin, NP
    Celic, A
    Dumont, ME
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2002, 317 (05) : 765 - 788
  • [39] Efficient signal transduction by a chimeric yeast-mammalian G protein α subunit Gpa1-Gsα covalently fused to the yeast receptor Ste2
    Medici, R
    Bianchi, E
    Di Segni, G
    Tocchini-Valentini, GP
    [J]. EMBO JOURNAL, 1997, 16 (24) : 7241 - 7249
  • [40] Receptor activation: what does the rhodopsin structure tell us?
    Meng, EC
    Bourne, HR
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 2001, 22 (11) : 587 - 593