Ozone in indoor environments: Concentration and chemistry

被引:566
作者
Weschler, CJ [1 ]
机构
[1] Telcordia Technol, Red Bank, NJ 07701 USA
来源
INDOOR AIR-INTERNATIONAL JOURNAL OF INDOOR AIR QUALITY AND CLIMATE | 2000年 / 10卷 / 04期
关键词
ozone; I/O ratio; indoor chemistry; aldehydes; particulates; free radicals;
D O I
10.1034/j.1600-0668.2000.010004269.x
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The concentration of indoor ozone depends on a number of factors, including the outdoor ozone concentration, air exchange rates, indoor emission rates, surface removal rates, and reactions between ozone and other chemicals in the air. Outdoor ozone concentrations often display strong diurnal variations, and this adds a dynamic excitation to the transport and chemical mechanisms at play. Hence, indoor ozone concentrations can vary significantly from hour-to-hour, day-to-day, and season-to-season, as well as from room-to-room and structure-to-structure. Under normal conditions, the half-life of ozone indoors is between 7 and 10 min and is determined primarily by surface removal and air exchange. Although reactions between ozone and most other indoor pollutants are thermodynamically favorable, in the majority of cases they are quite slow. Rate constants for reactions of ozone with the more commonly identified indoor pollutants are summarized in this article. They show that only a small fraction of the reactions occur at a rate fast enough to compete with air exchange, assuming typical indoor ozone concentrations. In the case of organic compounds, the "fast" reactions involve compounds with unsaturated carbon-carbon bonds. Although such compounds typically comprise less than 10% of indoor pollutants, their reactions with ozone have the potential to be quite significant as sources of indoor free radicals and multifunctional (-C=O, -COOH, -OH) stable compounds that are often quite odorous. The stable compounds are present as both gas phase and condensed phase species, with the latter contributing to the overall concentration of indoor submicron particles. Indeed, ozone/alkene reactions provide a link between outdoor ozone, outdoor particles and indoor particles. Indoor ozone and the products derived from reactions initiated by indoor ozone are potentially damaging to both human health and materials; more detailed explication of these impacts is an area of active investigation.
引用
收藏
页码:269 / 288
页数:20
相关论文
共 107 条
[1]   CHARACTERIZATION OF POTENTIAL INDOOR SOURCES OF OZONE [J].
ALLEN, RJ ;
WADDEN, RA ;
ROSS, ED .
AMERICAN INDUSTRIAL HYGIENE ASSOCIATION JOURNAL, 1978, 39 (06) :466-471
[2]  
ANDERSSON K, 1996, NATURFARGER INDENTIF, V12, P1
[3]  
*ASHRAE, 1997, 1994 ASHRAE HDB FUND
[4]  
*ASHRAE, 1989, 621989R ASHRAE
[5]   PRODUCTS OF THE GAS-PHASE REACTIONS OF O-3 WITH ALKENES [J].
ATKINSON, R ;
TUAZON, EC ;
ASCHMANN, SM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1995, 29 (07) :1860-1866
[6]   EVALUATED KINETIC AND PHOTOCHEMICAL DATA FOR ATMOSPHERIC CHEMISTRY SUPPLEMENT-IV - IUPAC SUBCOMMITTEE ON GAS KINETIC DATA EVALUATION FOR ATMOSPHERIC CHEMISTRY [J].
ATKINSON, R ;
BAULCH, DL ;
COX, RA ;
HAMPSON, RF ;
KERR, JA ;
TROE, J .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1992, 21 (06) :1125-1568
[7]   Modeling ozone levels in and around southern California homes [J].
Avol, EL ;
Navidi, WC ;
Colome, SD .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (04) :463-468
[8]  
AXLEY JW, 1993, P IAQ PROBL SCI PRAC
[9]  
BERK JV, 1981, 74 ANN M AIR POLL CO
[10]   Ozone measurement with passive samplers: Validation and use for ozone pollution assessment in Montpellier, France [J].
Bernard, NL ;
Gerber, MJ ;
Astre, CM ;
Saintot, MJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (02) :217-222