Conformational reorganisation in interfacial protein electron transfer

被引:82
作者
Jeuken, LJC [1 ]
机构
[1] Univ Leeds, Leeds LS2 9JT, W Yorkshire, England
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2003年 / 1604卷 / 02期
基金
英国生物技术与生命科学研究理事会;
关键词
protein-protein electron transfer; electrochemistry; self-assembled monolayer; Marcus theory; gated electron transfer; azurin; cytochrome c;
D O I
10.1016/S0005-2728(03)00026-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-protein electron transfer (ET) plays an essential role in all redox chains. Earlier studies which used cross-linking and increased solution viscosity indicated that the rate of many ET reactions is limited (i.e., gated) by conformational reorientations at the surface interface. These results are later supported by structural studies using NMR and molecular modelling. New insights into conformational gating have also come from electrochemical experiments in which proteins are noncovalently adsorbed on the electrode surface. These systems have the advantage that it is relatively easy to vary systematically the driving force and electronic coupling. In this review we summarize the current knowledge obtained from these electrochemical experiments and compare it with some of the results obtained for protein-protein ET. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 120 条
[71]   Role of configurational gating in intracomplex electron transfer from cytochrome c to the radical cation in cytochrome c peroxidase [J].
Mei, HK ;
Wang, KF ;
Peffer, N ;
Weatherly, G ;
Cohen, DS ;
Miller, M ;
Pielak, G ;
Durham, B ;
Millett, F .
BIOCHEMISTRY, 1999, 38 (21) :6846-6854
[72]   TRANSIENT KINETICS OF ELECTRON-TRANSFER FROM A VARIETY OF C-TYPE CYTOCHROMES TO PLASTOCYANIN [J].
MEYER, TE ;
ZHAO, ZG ;
CUSANOVICH, MA ;
TOLLIN, G .
BIOCHEMISTRY, 1993, 32 (17) :4552-4559
[73]   Cytochrome C oxidase: Structure and spectroscopy [J].
Michel, H ;
Behr, J ;
Harrenga, A ;
Kannt, A .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1998, 27 :329-356
[74]   NATURE OF BIOLOGICAL ELECTRON-TRANSFER [J].
MOSER, CC ;
KESKE, JM ;
WARNCKE, K ;
FARID, RS ;
DUTTON, PL .
NATURE, 1992, 355 (6363) :796-802
[75]   Electrostatic-field dependent activation energies modulate electron transfer of cytochrome c [J].
Murgida, DH ;
Hildebrandt, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (49) :12814-12819
[76]   Heterogeneous electron transfer of cytochrome c on coated silver electrodes.: Electric field effects on structure and redox potential [J].
Murgida, DH ;
Hildebrandt, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (08) :1578-1586
[77]   Proton-coupled electron transfer of cytochrome c [J].
Murgida, DH ;
Hildebrandt, P .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (17) :4062-4068
[78]   The distribution of standard rate constants for electron transfer between thiol-modified gold electrodes and adsorbed cytochrome c [J].
Nahir, TM ;
Bowden, EF .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 410 (01) :9-13
[79]   Determination of the hemoglobin surface domains that react with cytochrome b5 [J].
Naito, NR ;
Hui, HL ;
Noble, RW ;
Hoffman, BM .
BIOCHEMISTRY, 2001, 40 (07) :2060-2065
[80]   Intermolecular biological electron transfer: an electrochemical approach [J].
Niki, K ;
Sprinkle, JR ;
Margoliash, E .
BIOELECTROCHEMISTRY, 2002, 55 (1-2) :37-40