Haplotyping populations by pure parsimony: Complexity of exact and approximation algorithms

被引:73
作者
Lancia, G
Pinotti, MC
Rizzi, R
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[3] Univ Trent, Dipartimento Informat & Telecomunicaz, I-38050 Povo, TN, Italy
关键词
pure parsimony haplotyping; SNPs; deterministic rounding; node cover; compact integer program;
D O I
10.1287/ijoc.1040.0085
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we address the pure parsimony haplotyping problem: Find a minimum number of haplotypes that explains a given set of genotypes. We prove that the problem is APX-hard and present a 2(k-1)-approximation algorithm for the case in which each genotype has at most k ambiguous positions. We further give a new integer-programming formulation that has (for the first time) a polynomial number variables and constraints. Finally, we give approximation algorithms, not based on linear programming, whose running times are almost linear in the input size.
引用
收藏
页码:348 / 359
页数:12
相关论文
共 23 条
[1]   Some APX-completeness results for cubic graphs [J].
Alimonti, P ;
Kann, V .
THEORETICAL COMPUTER SCIENCE, 2000, 237 (1-2) :123-134
[2]  
[Anonymous], [No title captured]
[3]  
Ausiello G, 1999, COMPLEXITY APPROXIMA, DOI DOI 10.1007/978-3-642-58412-1
[4]   Haplotyping as perfect phylogeny: A direct approach [J].
Bafna, V ;
Gusfield, D ;
Lancia, G ;
Yooseph, S .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (3-4) :323-340
[5]  
Bar-Yehuda R., 1985, ANN DISCRETE MATH, V25, P27, DOI DOI 10.1016/S0304-0208(08)73101-3
[6]  
BERMAN P, 1998, 29 ECCC U TIER DEP C
[7]   It's raining SNPs, hallelujah? [J].
Chakravarti, A .
NATURE GENETICS, 1998, 19 (03) :216-217
[8]   Vertex Cover: Further observations and further improvements [J].
Chen, J ;
Kanj, IA ;
Jia, WJ .
JOURNAL OF ALGORITHMS, 2001, 41 (02) :280-301
[9]  
CLARK AG, 1990, MOL BIOL EVOL, V7, P111
[10]  
Eskin Eleazar, 2003, J Bioinform Comput Biol, V1, P1, DOI 10.1142/S0219720003000174