Impact of the mixing boundary layer on the relationship between PM2.5 and aerosol optical thickness

被引:58
作者
Boyouk, Neda [1 ,2 ,3 ]
Leon, Jean-Francois [1 ,2 ,3 ]
Delbarre, Herve [1 ,4 ,5 ]
Podvin, T. [1 ,2 ,3 ]
Deroo, C. [1 ,2 ,3 ]
机构
[1] Univ Lille Nord France, F-59000 Lille, France
[2] USTL, LOA, F-59655 Villeneuve Dascq, France
[3] CNRS, UMR 8518, F-59655 Villeneuve Dascq, France
[4] ULCO, LPCA, F-59140 Dunkerque, France
[5] CNRS, UMR 8101, F-59140 Dunkerque, France
关键词
Mass concentration; Aerosol optical thickness; Boundary layer; Lidar; COMPLEX REFRACTIVE-INDEX; PARTICULATE MATTER; AIR-POLLUTION; LIDAR; URBAN; RETRIEVAL; NETWORK; AERONET; HEIGHT; SUN;
D O I
10.1016/j.atmosenv.2009.06.053
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The purpose of this paper is to study the relationship between columnar aerosol optical thickness and ground-level aerosol mass. A set of Sun photometer, elastic backscattering lidar and TEOM measurements were acquired during April 2007 in Lille, France. The PM2.5 in the mixed boundary layer is estimated using the lidar signal, aerosol optical thickness, or columnar integrated Sun photometer size distribution and compared to the ground-level station measurements. The lidar signal recorded in the lowest level (240 m) is well correlated to the PM2.5 (R-2 = 0.84). We also show that the correlation between AOT-derived and measured PM2.5 is significantly improved when considering the mixed boundary layer height derived from the lidar. The use of the Sun photometer aerosol fine fraction volume does not improve the correlation. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 40 条
[31]   Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements [J].
Raut, J. -C. ;
Chazette, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (04) :901-919
[32]   Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment [J].
Raut, J. -C. ;
Chazette, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (11) :2797-2815
[33]   Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands [J].
Schaap, M. ;
Apituley, A. ;
Timmermans, R. M. A. ;
Koelemeijer, R. B. A. ;
de Leeuw, G. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (03) :909-925
[34]   Review and intercomparison of operational methods for the determination of the mixing height [J].
Seibert, P ;
Beyrich, F ;
Gryning, SE ;
Joffre, S ;
Rasmussen, A ;
Tercier, P .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (07) :1001-1027
[35]   Aircraft profiles of aerosol microphysics and optical properties over North America: Aerosol optical depth and its association with PM2.5 and water uptake [J].
Shinozuka, Yohei ;
Clarke, Antony D. ;
Howell, Steven G. ;
Kapustin, Vladimir N. ;
McNaughton, Cameron S. ;
Zhou, Jingchuan ;
Anderson, Bruce E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D12)
[36]   OPTICAL-PROPERTIES OF AEROSOLS OF MIXED COMPOSITION [J].
SLOANE, CS .
ATMOSPHERIC ENVIRONMENT, 1984, 18 (04) :871-878
[37]  
Stull R.B., 2012, An Introduction to Boundary Layer Meteorology, V13
[38]   A European aerosol phenomenology-1:: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe [J].
Van Dingenen, R ;
Raes, F ;
Putaud, JP ;
Baltensperger, U ;
Charron, A ;
Facchini, MC ;
Decesari, S ;
Fuzzi, S ;
Gehrig, R ;
Hansson, HC ;
Harrison, RM ;
Hüglin, C ;
Jones, AM ;
Laj, P ;
Lorbeer, G ;
Maenhaut, W ;
Palmgren, F ;
Querol, X ;
Rodriguez, S ;
Schneider, J ;
ten Brink, H ;
Tunved, P ;
Torseth, K ;
Wehner, B ;
Weingartner, E ;
Wiedensohler, A ;
Wåhlin, P .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (16) :2561-2577
[39]   Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing [J].
van Donkelaar, Aaron ;
Martin, Randall V. ;
Park, Rokjin J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D21)
[40]  
[王美琴 Wang Meiqin], 2003, [农药学学报, Chinese journal of pesticide science], V5, P30