Inferring mechanism from time-series data: Delay-differential equations

被引:44
作者
Ellner, SP [1 ]
Kendall, BE
Wood, SN
McCauley, E
Briggs, CJ
机构
[1] N Carolina State Univ, Dept Stat, Biomath Grad Program, Raleigh, NC 27695 USA
[2] Univ Calif Santa Barbara, Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93106 USA
[3] Univ St Andrews, Sch Math & Computat Sci, St Andrews KY16 9SS, Fife, Scotland
[4] Univ Calgary, Dept Biol Sci, Div Ecol, Calgary, AB T2N 1N4, Canada
[5] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA
来源
PHYSICA D | 1997年 / 110卷 / 3-4期
基金
美国国家科学基金会; 日本学术振兴会;
关键词
time series analysis; delay-differential equations; population dynamics;
D O I
10.1016/S0167-2789(97)00123-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When there is qualitative information about the underlying professes and structure of a dynamical system, it may be possible to infer very accurate quantitative information about these processes using only an output rime series from the system. We illustrate how this can be accomplished for time series data from a delay-differential equation with a single fixed delay. Our approach exploits modem techniques for non-parametric function estimation, is robust to fairly high levels of dynamic noise and measurement error, and can be extended straightforwardly to more general delay-differential systems and multivariate systems.
引用
收藏
页码:182 / 194
页数:13
相关论文
共 17 条
  • [11] Kennedy P., 1992, GUIDE EC
  • [12] OSCILLATION AND CHAOS IN PHYSIOLOGICAL CONTROL-SYSTEMS
    MACKEY, MC
    GLASS, L
    [J]. SCIENCE, 1977, 197 (4300) : 287 - 288
  • [13] Model misspecification tests, model building and predictability in complex systems
    Manuca, R
    Savit, R
    [J]. PHYSICA D, 1996, 93 (1-2): : 78 - 100
  • [14] GAS EVOLUTION OSCILLATORS .3. A COMPUTATIONAL MODEL OF THE MORGAN REACTION
    SMITH, KW
    NOYES, RM
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (09) : 1520 - 1524
  • [15] SMITH LA, 1995, CHAOS FORECASTING, P87
  • [16] *STAT SCI, 1993, S PLUS GUID STAT MAT
  • [17] Wahba G, 1990, SPLINE MODELS OBSERV