A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions

被引:144
作者
Fiddes, Lindsey K. [1 ]
Raz, Neta [1 ]
Srigunapalan, Suthan [2 ,3 ]
Tumarkan, Ethan [1 ]
Simmons, Craig A. [2 ,3 ]
Wheeler, Aaron R. [1 ,2 ]
Kumacheva, Eugenia [1 ]
机构
[1] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[2] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada
[3] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Microchannels; Flow; Cardiovascular system; Circular cross-section; Patterning; Seeding of endothelial cells; BLOOD-FLOW; MICROCHANNEL; FABRICATION; CHANNELS; NEUTROPHILS; RESISTANCE;
D O I
10.1016/j.biomaterials.2010.01.082
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Since the inception of soft lithography, microfluidic devices for cardiovascular research have been fabricated easily and cost-effectively using the soft lithography method. The drawback of this method was the fabrication of microchannels with rectangular cross-sections, which did not replicate the circular cross-sections of blood vessels. This article presents a novel, straightforward approach for the fabrication of microchannels with circular cross-sections in poly(dimethylsiloxane) (PDMS), using soft lithography. The method exploits the polymerization of the liquid silicone oligomer around a gas stream when both of them are coaxially introduced in the microchannel with a rectangular cross-section. We demonstrate (i) the ability to control the diameter of circular cross-sections of microchannels from ca. 40-100 mu m; (ii) the fabrication of microchannels with constrictions, and (iii) the capability to grow endothelial cells on the inner surface of the microchannels. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3459 / 3464
页数:6
相关论文
共 26 条
[1]   Glass coating for PDMS microfluidic channels by sol-gel methods [J].
Abate, Adam R. ;
Lee, Daeyeon ;
Do, Thao ;
Holtze, Christian ;
Weitz, David A. .
LAB ON A CHIP, 2008, 8 (04) :516-518
[2]  
ABDELGAWAD M, 2010, 23 IEEE INT C MEMS P
[3]   High-speed microfluidic differential manometer for cellular-scale hydrodynamics [J].
Abkarian, M ;
Faivre, M ;
Stone, HA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (03) :538-542
[4]   Poly(dimethylsiloxane)-based microchip for two-dimensional solid-phase extraction-capillary electrophoresis with an integrated electrospray emitter tip [J].
Dahlin, AP ;
Bergström, SK ;
Andrén, PE ;
Markides, KE ;
Bergquist, J .
ANALYTICAL CHEMISTRY, 2005, 77 (16) :5356-5363
[5]   The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease [J].
Farcas, Monica A. ;
Rouleau, Leonie ;
Fraser, Richard ;
Leask, Richard L. .
BIOMEDICAL ENGINEERING ONLINE, 2009, 8
[6]   Flow of microgel capsules through topographically patterned microchannels [J].
Fiddes, Lindsey K. ;
Young, Edmond W. K. ;
Kumacheva, Eugenia ;
Wheeler, Aaron R. .
LAB ON A CHIP, 2007, 7 (07) :863-867
[7]   Augmenting microgel flow via receptor-ligand binding in the constrained geometries of microchannels [J].
Fiddes, Lindsey K. ;
Chan, Ho Ka Carol ;
Wyss, Kristine ;
Simmons, Craig A. ;
Kumacheva, Eugenia ;
Wheeler, Aaron R. .
LAB ON A CHIP, 2009, 9 (02) :286-290
[8]  
GABRIELE S, 2008, IFMBE P, V22, P1959
[9]   Sickle cell vasoocclusion and rescue in a microfluidic device [J].
Higgins, J. M. ;
Eddington, D. T. ;
Bhatia, S. N. ;
Mahadevan, L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (51) :20496-20500
[10]   Suppression of instabilities in multiphase flow by geometric confinement [J].
Humphry, Katherine J. ;
Ajdari, Armand ;
Fernandez-Nieves, Alberto ;
Stone, Howard A. ;
Weitz, David A. .
PHYSICAL REVIEW E, 2009, 79 (05)