Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases

被引:88
作者
Ghosh, S
Feany, MB
机构
[1] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
关键词
D O I
10.1093/hmg/ddh214
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most human neurodegenerative diseases have a number of common features, including adult onset, progressive degeneration of selected neuronal populations and formation of abnormal protein aggregates. Although these shared characteristics raise the possibility of conserved pathogenic mechanisms, the diverse clinical and pathological features of each disorder indicate significant differences. As a number of human neurodegenerative diseases have now been modeled in Drosophila, and genetic modifiers identified, we have been able to perform a genetic comparison of pathways controlling toxicity in these models. By directly comparing modifiers isolated in the models of polyglutamine diseases and in a Drosophila model of tauopathy, we find a final common pathway of cell death involving apoptosis. Among the polyglutamine diseases, protein folding and histone acetylation are common key mediators. In addition, two novel modifiers suggest shared pathways of toxicity among all the disorders. Cell-type specificity is a salient feature of all neurodegenerative diseases; however, most work to date in the Drosophila models have been performed in the retina. Therefore, we determined whether similar pathways of toxicity operate in neurons of the Drosophila brain. Many, but not all, retinal modifiers also modify toxicity in postmitotic neurons in the brain. Analysis of polyglutamine toxicity in the adult brain facilitated the identification of nicotinamide (vitamin B3), a vitamin with histone deacetylase inhibiting activity, as a potent suppressor of polyglutamine toxicity. These findings outline common pathways of neurotoxicity, demonstrate disease- and cell-type specific pathways and identify a common vitamin as a potential therapy in polyglutamine disorders.
引用
收藏
页码:2011 / 2018
页数:8
相关论文
共 28 条
[1]   Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease [J].
Auluck, PK ;
Chan, HYE ;
Trojanowski, JQ ;
Lee, VMY ;
Bonini, NM .
SCIENCE, 2002, 295 (5556) :865-868
[2]   Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1 [J].
Bitterman, KJ ;
Anderson, RM ;
Cohen, HY ;
Latorre-Esteves, M ;
Sinclair, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (47) :45099-45107
[3]   Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila [J].
Chan, HYE ;
Warrick, JM ;
Andriola, I ;
Merry, D ;
Bonini, NM .
HUMAN MOLECULAR GENETICS, 2002, 11 (23) :2895-2904
[4]   A randomized trial of nicotinamide and vitamin E in children with recent onset type 1 diabetes (IMDIAB IX) [J].
Crinò, A ;
Schiaffini, R ;
Manfrini, S ;
Mesturino, C ;
Visalli, N ;
Anguissola, GB ;
Suraci, C ;
Pitocco, D ;
Spera, S ;
Corbi, S ;
Matteoli, MC ;
Patera, IP ;
Bitti, MLM ;
Bizzarri, C ;
Pozzillion, P .
EUROPEAN JOURNAL OF ENDOCRINOLOGY, 2004, 150 (05) :719-724
[5]   Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice [J].
Cummings, CJ ;
Sun, YL ;
Opal, P ;
Antalffy, B ;
Mestril, R ;
Orr, HT ;
Dillmann, WH ;
Zoghbi, HY .
HUMAN MOLECULAR GENETICS, 2001, 10 (14) :1511-1518
[6]  
DEGIROLAMI U, 2000, PATHOLOGY AGING HUMA, P332
[7]   Cell death in polyglutamine diseases [J].
Evert, BO ;
Wüllner, U ;
Klockgether, T .
CELL AND TISSUE RESEARCH, 2000, 301 (01) :189-204
[8]   A Drosophila model of Parkinson's disease [J].
Feany, MB ;
Bender, WW .
NATURE, 2000, 404 (6776) :394-398
[9]   Identification of genes that modify ataxin-1-induced neurodegeneration [J].
Fernandez-Funez, P ;
Nino-Rosales, ML ;
de Gouyon, B ;
She, WC ;
Luchak, JM ;
Martinez, P ;
Turiegano, E ;
Benito, J ;
Capovilla, M ;
Skinner, PJ ;
McCall, A ;
Canal, I ;
Orr, HT ;
Zoghbi, HY ;
Botas, J .
NATURE, 2000, 408 (6808) :101-106
[10]  
Ferrante RJ, 2003, J NEUROSCI, V23, P9418