The optical design and characterization of the Microwave Anisotropy Probe

被引:65
作者
Page, L
Jackson, C
Barnes, C
Bennett, C
Halpern, M
Hinshaw, G
Jarosik, N
Kogut, A
Limon, M
Meyer, SS
Spergel, DN
Tucker, GS
Wilkinson, DT
Wollack, E
Wright, EL
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada
[4] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[5] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[6] Brown Univ, Dept Phys, Providence, RI 02912 USA
[7] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
关键词
cosmic microwave background; cosmology : observations; dark matter; early universe; space vehicles : instruments; telescopes;
D O I
10.1086/346078
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The primary goal of the MAP satellite, now in orbit, is to make high-fidelity polarization-sensitive maps of the full sky in five frequency bands between 20 and 100 GHz. From these maps we will characterize the properties of the cosmic microwave background (CMB) anisotropy and Galactic and extragalactic emission on angular scales ranging from the effective beam size, less than 0.degrees23, to the full sky. MAP is a differential microwave radiometer. Two back-to-back shaped offset Gregorian telescopes feed two mirror symmetric arrays of 10 corrugated feeds. We describe the prelaunch design and characterization of the optical system, compare the optical models to the measurements, and consider multiple possible sources of systematic error.
引用
收藏
页码:566 / 586
页数:21
相关论文
共 89 条
[21]   Mapping the cosmic microwave background anisotropy: The first flight of the QMAP experiment [J].
Devlin, MJ ;
de Oliveira-Costa, A ;
Herbig, T ;
Miller, AD ;
Netterfield, CB ;
Page, LA ;
Tegmark, M .
ASTROPHYSICAL JOURNAL, 1998, 509 (02) :L69-L72
[22]   THE MEASUREMENT OF THERMAL RADIATION AT MICROWAVE FREQUENCIES [J].
DICKE, RH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1946, 17 (07) :268-275
[23]  
Dicke RH., 1968, THEORETICAL SIGNIFIC
[24]   THEORY OF IMAGING IN CASSEGRAINIAN AND GREGORIAN ANTENNAS [J].
DRAGONE, C .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1986, 34 (05) :689-701
[25]   IMAGING IN A GREGORIAN ANTENNA FROM 12 TO 30 GHZ [J].
DRAGONE, C ;
RUSCIO, JT .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1988, 36 (02) :209-215
[26]   OPTICAL-PROPERTIES OF INTERSTELLAR GRAPHITE AND SILICATE GRAINS [J].
DRAINE, BT ;
LEE, HM .
ASTROPHYSICAL JOURNAL, 1984, 285 (01) :89-108
[27]  
EVANS SW, 2002, NATURAL ENV NEAR SUN
[28]  
GALINDOISRAEL V, 1992, IEEE T ANTENN PROPAG, V40, P422, DOI 10.1109/8.138844
[29]   CROSS-CORRELATION BETWEEN THE 170 GHZ SURVEY MAP AND THE COBE DIFFERENTIAL MICROWAVE RADIOMETER 1ST-YEAR MAPS [J].
GANGA, K ;
CHENG, E ;
MEYER, S ;
PAGE, L .
ASTROPHYSICAL JOURNAL, 1993, 410 (02) :L57-L60
[30]   OPTIMUM THICKNESS OF METAL IN WAVEGUIDING STRUCTURES, GROUND PLANES AND REFLECTORS [J].
GARG, R ;
GUPTA, KC ;
SHARAN, R .
INTERNATIONAL JOURNAL OF ELECTRONICS, 1975, 39 (05) :525-527