Genomic dissection for characterization of cancerous oral epithelium tissues using transcription profiling

被引:33
作者
Hwang, D
Alevizos, I
Schmitt, WA
Misra, J
Ohyama, H
Todd, R
Mahadevappa, M
Warrington, JA
Stephanopoulos, G
Wong, DT
Stephanopoulos, G
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Harvard Univ, Sch Dent Med, Dept Oral Med & Diagnost Sci, Lab Mol Pathol, Boston, MA 02115 USA
[3] Affymetrix Inc, Santa Clara, CA 95051 USA
基金
美国国家卫生研究院;
关键词
oral epithelial cancer; DNA microarray; discriminatory genes; pattern recognition; statistical analysis;
D O I
10.1016/S1368-8375(02)00108-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Genome-wide and high-throughput functional genomic tools offer the potential of identifying disease-associated genes and dissecting disease regulatory patterns. There is a need for a set of systematic bioinformatic tools that handles efficiently a large number of variables for extracting biological meaning from experimental outputs. We present well-characterized statistical tools to discover genes that are differentially expressed between malignant oral epithelial and normal tissues in microarray experiments and to construct a robust classifier using the identified discriminatory genes. Those tools include Wilks' lambda score, error rate estimated from leave-one out cross-validation (LOOCV) and Fisher Discriminant Analysis (FDA). High Density DNA microarrays and Real Time Quantitative PCR were employed for the generation and validation of the transcription profile of the oral cancer and normal samples. We identified 45 genes that are strongly correlated with malignancy. Of the 45 genes identified, six have been previously implicated in the disease, and two are uncharacterized clones. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:259 / 268
页数:10
相关论文
共 37 条
[1]   Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis [J].
Alevizos, I ;
Mahadevappa, M ;
Zhang, X ;
Ohyama, H ;
Kohno, Y ;
Posner, M ;
Gallagher, GT ;
Varvares, M ;
Cohen, D ;
Kim, D ;
Kent, R ;
Donoff, RB ;
Todd, R ;
Yung, CM ;
Warrington, JA ;
Wong, DTW .
ONCOGENE, 2001, 20 (43) :6196-6204
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]  
[Anonymous], 1984, Multivariate Analysis
[4]   Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA [J].
Bauer, Stefan ;
Groh, Veronika ;
Wu, Jun ;
Steinle, Alexander ;
Phillips, Joseph H. ;
Lanier, Lewis L. ;
Spies, Thomas .
JOURNAL OF IMMUNOLOGY, 2018, 200 (07) :2231-2233
[5]   Oncogenic kinase signalling [J].
Blume-Jensen, P ;
Hunter, T .
NATURE, 2001, 411 (6835) :355-365
[6]   Human tenascin-R - Complete primary structure, pre-mRNA alternative splicing and gene localization on chromosome 1q23-q24 [J].
Carnemolla, B ;
Leprini, A ;
Borsi, L ;
Querze, G ;
Urbini, S ;
Zardi, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (14) :8157-8160
[7]  
Dudoit S, 2002, STAT SINICA, V12, P111
[8]   Proliferation, cell cycle and apoptosis in cancer [J].
Evan, GI ;
Vousden, KH .
NATURE, 2001, 411 (6835) :342-348
[9]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[10]   Fundamental patterns underlying gene expression profiles: Simplicity from complexity [J].
Holter, NS ;
Mitra, M ;
Maritan, A ;
Cieplak, M ;
Banavar, JR ;
Fedoroff, NV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8409-8414