Gravitational scaling dimensions

被引:58
作者
Hamber, HW [1 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
来源
PHYSICAL REVIEW D | 2000年 / 61卷 / 12期
关键词
D O I
10.1103/PhysRevD.61.124008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A model for quantized gravitation based on simplicial lattice discretization is studied in detail using a comprehensive finite size scaling analysis combined with renormalization group methods. The results are consistent with a value for the universal critical exponent for gravitation, nu = 1/3, and suggest a simple relationship between Newton's constant, the gravitational correlation length and the observable average space-time curvature. Some perhaps testable phenomenological implications of these results are discussed. To achieve a high numerical accuracy in the evaluation of the lattice path integral a dedicated parallel machine was assembled.
引用
收藏
页数:21
相关论文
共 113 条
[1]   ANTI-DE SITTER SPACE AT FINITE TEMPERATURE [J].
ALLEN, B ;
FOLACCI, A ;
GIBBONS, GW .
PHYSICS LETTERS B, 1987, 189 (03) :304-310
[2]   QUANTUM FIELD-THEORY IN ANTI-DE SITTER SPACE-TIME [J].
AVIS, SJ ;
ISHAM, CJ ;
STOREY, D .
PHYSICAL REVIEW D, 1978, 18 (10) :3565-3576
[3]   ASYMPTOTIC FREEDOM IN HIGHER-DERIVATIVE QUANTUM-GRAVITY [J].
AVRAMIDI, IG ;
BARVINSKY, AO .
PHYSICS LETTERS B, 1985, 159 (4-6) :269-274
[4]  
Baker G. A., 1981, ENCY MATH ITS APPL, V13
[5]   Scaling corrections:: site percolation and Ising model in three dimensions [J].
Ballesteros, HG ;
Fernández, LA ;
Martín-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (01) :1-13
[6]  
Barber M. N., 1983, Finite-size Scaling in Phase Transitions and Critical Phenomena, V8
[7]   Parallelizable implicit evolution scheme for Regge calculus [J].
Barrett, JW ;
Galassi, M ;
Miller, WA ;
Sorkin, RD ;
Tuckey, PA ;
Williams, RM .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (04) :815-839
[8]   IS THERE QUANTUM-GRAVITY IN 2 DIMENSIONS [J].
BEIRL, W ;
BERG, BA .
NUCLEAR PHYSICS B, 1995, 452 (1-2) :415-428
[9]   WELL-DEFINED PHASE OF SIMPLICIAL QUANTUM-GRAVITY IN 4 DIMENSIONS [J].
BEIRL, W ;
GERSTENMAYER, E ;
MARKUM, H ;
RIEDLER, J .
PHYSICAL REVIEW D, 1994, 49 (10) :5231-5239
[10]   REGGE GRAVITY ON GENERAL TRIANGULATIONS [J].
BEIRL, W ;
MARKUM, H ;
RIEDLER, J .
PHYSICS LETTERS B, 1994, 341 (01) :12-18