Information-theoretic measures of hyperspherical harmonic

被引:25
作者
Dehesa, J. S. [1 ]
Lopez-Rosa, S.
Yanez, R. J.
机构
[1] Univ Granada, Inst Carlos I Fis Teor & Computat, E-18071 Granada, Spain
[2] Univ Granada, Dept Fis Moderna, E-18071 Granada, Spain
[3] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
D O I
10.1063/1.2712913
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multidimensional spreading of the hyperspherical harmonics can be measured in a different and complementary manner by means of the following information-theoretic quantities: the Fisher information, the average density or first-order entropic moment, and the Shannon entropy. They give measures of the volume anisotropy of the eigenfunctions of any central potential in the hyperspace. Contrary to the Fisher information, which is a local measure because of its gradient-functional form, the other two quantities have a global character because they are powerlike (average density) and logarithmic (Shannon's entropy) functionals of the hyperspherical harmonics. In this paper we obtain the explicit expression of the first two measures and a lower bound to the Shannon entropy in terms of the labeling indices of the hyperspherical harmonics. (c) 2007 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 46 条
[11]   LARGE-N EXPANSIONS IN QUANTUM-MECHANICS, ATOMIC PHYSICS AND SOME O(N) INVARIANT-SYSTEMS [J].
CHATTERJEE, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 186 (06) :249-370
[12]   Coulomb and quantum oscillator problems in conical spaces with arbitrary dimensions [J].
Coelho, JLA ;
Amaral, RLPG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (25) :5255-5265
[13]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[14]   Fisher information of D-dimensional hydrogenic systems in position and momentum spaces [J].
Dehesa, J. S. ;
Lopez-Rosa, S. ;
Olmos, B. ;
Yanez, R. J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (05)
[15]   RIGOROUS LOWER BOUNDS TO AVERAGE ELECTRON RADIAL AND MOMENTUM DENSITIES FOR ATOMIC SYSTEMS [J].
DEHESA, JS ;
GALVEZ, FJ ;
PORRAS, I .
PHYSICAL REVIEW A, 1989, 39 (02) :494-500
[16]   Theory of statistical estimation. [J].
Fisher, RA .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1925, 22 :700-725
[17]   Shannon entropy as an indicator of atomic avoided crossings in strong parallel magnetic and electric fields -: art. no. 113001 [J].
González-Férez, R ;
Dehesa, JS .
PHYSICAL REVIEW LETTERS, 2003, 91 (11)
[18]   Characterization of atomic avoided crossings by means of Fisher's information [J].
González-Férez, R ;
Dehesa, JS .
EUROPEAN PHYSICAL JOURNAL D, 2005, 32 (01) :39-43
[19]  
Green G, 1835, T CAMBRIDGE PHILOS S, V5, P395
[20]   Universal geometric approach to uncertainty, entropy, and information [J].
Hall, MJW .
PHYSICAL REVIEW A, 1999, 59 (04) :2602-2615